Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Heat shock protein 60 is an important chaperonin. In this paper, hsp60 of the stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), was cloned by RT-PCR and rapid amplification of cDNA end (RACE) reactions. The full length cDNA of hsp6°Consisted of 2142 bp, with an ORF of 1719 bp, encoding 572 amino acid residues, with a 5'UTR of 158 bp and a 3'UTR of 265 bp. Cluster analysis confirmed that the deduced amino acid sequence shared high identity with the reported sequences from other insects (77%–86%). To investigate whether hsp60 in C. suppressalis responds to thermal stress, the expression levels of hsp60 mRNA in larval haemocytes across temperature gradients from 31 to 39°C were analysed by real-time quantitative PCR. There was no significant difference for hsp60 expression from 28 to 31°C. he temperatures for maximal induction of hsp60 expression in haemocytes was close to 36°C. Hsp60 expression was observed by using flow cytometry. These results revealed that thermal stress significantly induced hsp60 expression and Hsp60 synthesis in larval haemocytes, and the expression profiles of Hsp60 at the mRNA and protein levels were in high agreement with each other from 33 to 39°C.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere