Evaluation of the fundamental niche under controlled conditions can provide relevant information about physiological, evolutionary, and ecological aspects of an organism, without the influence of external factors. We investigated how allometric, phylogenetic, and adaptive components contribute to arboreal walking performance by 7 sigmodontine rodents of the Brazilian savanna (Cerrado). We captured the rodents in the field and evaluated their performances by measuring stride length, stride frequency, and velocity on 5 horizontal supports: flat board and cylindrical plastic tubes with diameters of 5.0, 3.5, 2.5, and 2.0 cm. Arboreal rodents exhibited higher velocities than terrestrial species by increasing stride frequency and decreasing stride length on supports with smaller diameters. However, terrestrial species decreased both stride frequency and stride length or tended to maintain stride length and vary stride frequency. Our results reveal a strong association between realized arboreal walking performances (as inferred by proportion of arboreal captures) and stride length and frequency. However, performance metrics were weakly related to body mass and exhibited no phylogenetic effects. Our results are consistent with the hypothesis that dynamically stable arboreal walking is facilitated by increased velocity. Arboreal walking performance is likely related to ecological factors rather than phylogenetic constraints.