Babak Ebrahimi, Sanam Shakibi, Woodbridge A. Foster
Journal of Medical Entomology 51 (3), 580-590, (1 May 2014) https://doi.org/10.1603/ME13100
KEYWORDS: Anopheles gambiae, egg, hatch, agitation, temperature
Mosquito eggs laid on water surfaces typically hatch spontaneously soon after the embryos within them become fully formed first-instar larvae. However, we have found that Anopheles gambiae Giles, an important vector of malaria in Africa, exhibits delayed hatching until the water surface is agitated, a feature overlooked in most laboratory colonies. Agitation within 24 h postoviposition, before embryonation was complete, failed to stimulate delayed postembryonic hatching of isolated eggs on the following day (day 2), when <1% had hatched spontaneously. However, 5 min of water agitation of these dormant pharate first-instar larvae on day 2 resulted in an almost immediate hatch of 63.3 versus 0% of nonagitated controls, plus another 3.9 versus 0.3%, respectively, during the following 24 h. With daily agitation, installment hatching occurred mainly during 2–6 d postoviposition. The mean cumulative hatch after 7 d of daily agitation was 83.1 versus 1.1% of nonagitated eggs. Experiments with eggs in groups demonstrated that egg density and activity of already-hatched larvae had no stimulatory effect. Eggs stored 1–4 wk at 25.5 or at 15.5°C, and then agitated daily for 6 d at 25.5°C, showed a gradual decline in viability. Viability was sustained longer at the lower temperature. Implications of agitation-induced egg hatching for rainy-season and dry-season ecology of An. gambiae are discussed. Suspended hatching and cool storage already are proving convenient for efficient mass rearing and accurate modeling of weather-based population dynamics.