Plague, a primarily flea-borne disease caused by Yersinia pestis, is characterized by rapidly spreading epizootics separated by periods of quiescence. Little is known about how and where Y. pestis persists between epizootics. It is commonly proposed, however, that Y. pestis is maintained during interepizootic periods in enzootic cycles involving flea vectors and relatively resistant host populations. According to this model, while susceptible individuals serve as infectious sources for feeding fleas and subsequently die of infection, resistant hosts survive infection, develop antibodies to the plague bacterium, and continue to provide bloodmeals to infected fleas. For Y. pestis to persist under this scenario, fleas must remain infected after feeding on hosts carrying antibodies to Y. pestis. Studies of other vector-borne pathogens suggest that host immunity may negatively impact pathogen survival in the vector. Here, we report infection rates and bacterial loads for fleas (both Xenopsylla cheopis (Rothschild) and Oropsylla montana (Baker)) that consumed an infectious bloodmeal and subsequently fed on an immunized or age-matched naive mouse. We demonstrate that neither the proportion of infected fleas nor the bacterial loads in infected fleas were significantly lower within 3 d of feeding on immunized versus naive mice. Our findings thus provide support for one assumption underlying the enzootic host model of interepizootic maintenance of Y. Pestis.
Translator Disclaimer
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.

Journal of Medical Entomology
Vol. 51 • No. 5
September 2014
Vol. 51 • No. 5
September 2014
enzootic
flea
plague
Yersinia pestis