Translator Disclaimer
1 July 2015 Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines
S. L. Sayson, A. Gloria-Soria, J. R. Powell, F. E. Edillo
Author Affiliations +

Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST = 0.006; FST = 0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

© The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email:
S. L. Sayson, A. Gloria-Soria, J. R. Powell, and F. E. Edillo "Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines," Journal of Medical Entomology 52(4), 638-646, (1 July 2015).
Received: 27 November 2014; Accepted: 21 April 2015; Published: 1 July 2015

This article is only available to subscribers.
It is not available for individual sale.

Aedes aegypti
seasonal fluctuation
temporal genetics
yellow fever mosquito
Get copyright permission
Back to Top