The structure of cranidial shape variation in the early ptychoparioid trilobites Crassifimbra walcotti, Crassifimbra? metalaspis (new combination), and Eokochaspis nodosa is explored using landmark-based geometric morphometric techniques, and is found to be generally similar among the species. Allometry is the strongest single source of cranidial shape variation within each species. The species share several trends in their respective patterns of ontogenetic shape change, but differ in the relative magnitude of these shared trends. Species-specific trends are also present. Each species follows a unique trajectory of ontogenetic shape change. The species exhibit subtle but significant differences in mean cranidial shape even at small size (sagittal length 1.75 mm); the magnitude of interspecific differences becomes larger at larger size (sagittal length 4.2 mm).
For conspecific cranidia of a given size, the major pattern of covariance among anatomical parts is essentially identical to the pattern of covariance among those parts during ontogeny. Developmentally determined covariance patterns among cranidial regions might be responsible for ontogenetic shape change and a portion of non-allometric shape intraspecific variation. Interspecific differences in cranidial shape resulted from complex local modifications to growth pattern and cannot be attributed to simple ontogenetic scaling.
The new collections permit the first description of non-cranidial sclerites of C. walcotti. A cephalic median organ is documented on C. walcotti, representing the oldest known occurrence of this structure in trilobites.