Decline of Raptors over a Three-Year Period in Laikipia, Central Kenya

Authors: Ogada, Darcy L., and Keesing, Felicia

Source: Journal of Raptor Research, 44(2) : 129-135

Published By: Raptor Research Foundation

URL: https://doi.org/10.3356/JRR-09-49.1
DECLINE OF RAPTORS OVER A THREE-YEAR PERIOD IN LAIKIPIA, CENTRAL KENYA

Darcy L. Ogada
Mpaala Research Centre, P.O. Box 555, Nanyuki, Kenya

Felicia Keesing
Bard College, Box 5000, Annandale, NY 12504 U.S.A.

ABSTRACT.—Raptors were monitored monthly over a three-year period in a protected area in central Kenya. The number of raptors declined more than 40% per year. Scavenging birds accounted for most of the decline; sightings decreased by 70% during our surveys, although these declines were not statistically significant. During the time of the study, the overall populations of large wild herbivores showed little change, whereas domestic herbivores, particularly sheep and goats, increased markedly, suggesting that food limitation was not the cause of the vulture declines at the study site. Possible causes of raptor decline include the consumption of poisoned baits, which are placed by pastoralists to kill large predators that attack livestock. Scavenging birds provide one of the most important yet underappreciated ecosystem services of any avian group. The rapid decline of scavenging birds, especially vultures, in central Kenya warrants additional population monitoring to understand whether declines are local or regional, and to elucidate causes of population decreases.

KEY WORDS: Africa; decline; Furadan; livestock; poisoning; raptors; vulture.

DISMINUCIÓN DE AVES RAPACES DURANTE UN PERIODO DE TRES AÑOS EN LAIKIPIA, KENIA CENTRAL

Resumen.—Las aves rapaces fueron monitoreadas mensualmente por un periodo de tres años en un área protegida en el centro de Kenia. El número de aves rapaces disminuyó en más de un 40% por año. Las aves carroñeras fueron el grupo que dio cuenta de la mayor parte de esta disminución ya que sus avistamientos disminuyeron en un 70% durante nuestros muestreos, pero estas disminuciones no fueron estadísticamente significativas. Durante el periodo de nuestro estudio, la población de grandes herbívoros silvestres no varió mucho, mientras que la población de herbívoros domésticos, principalmente ovejas y cabras, aumentó considerablemente, lo que sugiere que la limitación de alimento no fue la causa de la disminución de los buitres en el sitio de estudio. Las posibles causas de la disminución de aves rapaces incluyen el consumo de cebos envenenados que son colocados por los pastores locales para matar depredadores de gran tamaño que atacan a su ganado. Entre todos los grupos de aves, las carroñeras proveen uno de los servicios ecosistémicos más importantes y más subestimados. La rápida disminución de aves carroñeras en Kenia, especialmente de los buitres, justifica monitoreos poblacionales adicionales para entender si estas disminuciones son locales o regionales y para elucidar sus posibles causas.

[Traducción del equipo editorial]

National parks and other protected areas are playing an increasingly important role in the conservation of raptors (Liversidge 1984, Thiollay 2006). Not surprisingly, protected areas are critical refuges for most raptor species and they harbor the bulk of large raptor populations in Africa (Sorley and Andersen 1994, Herremans and Herremans-Tonnoeyr 2000, Thiollay 2006). Outside protected areas, raptors face increased threats associated with human activities including deforestation, overgrazing, increase in pesticide use, poisoning of predators, over-hunting, and direct persecution (Thiollay 2006).

Raptors living within protected areas are assumed to be relatively free from these disturbances. However, substantial increases in human population have occurred in recent decades and protected areas are...
not immune to the pressures this has created on limited natural resources. A recent study showed that raptor numbers within 30 km of protected area boundaries were more than 40% lower than in the core, indicating a large edge effect on populations inside protected areas (Herremans and Herremans-Tonnoeyr 2000). In addition, some raptors, most notably vultures and large eagles, travel large distances in search of food and require extensive territories for breeding, making them more likely to range outside of protected areas to locations where they may become vulnerable to harmful human activities (Houston 1974, Pennycuick 1976, Herholdt et al. 1996).

The core of central Kenya’s Laikipia District functions largely as a protected area despite being divided and privately owned. Almost half of the district’s 966 600 ha consists of large-scale ranches and conservancies that are hospitable to wildlife and enable large-ranging birds like vultures and eagles to exist relatively free from habitat destruction and human interference. However, areas mostly outside of the core have seen considerable recent settlement by small-scale crop farmers and traditionally nomadic pastoralists. Approximately 35% of the district consists of settlements or small-scale urbanization (Frank et al. 2005).

To determine whether the abundance of raptors in central Kenya was changing, we monitored raptors every month for three years (2001–2003) in central Laikipia District.

METHODS

Study Site. The study was conducted from January 2001–December 2003 at Mpala Research Centre (MRC), located in central Laikipia District in the highlands of central Kenya (Fig. 1). The habitat consists of wooded savanna, and the dominant tree species is *Acacia drepanolobium*. Large wildlife species include elephants (*Loxodonta africana*), reticulated giraffes (*Giraffa camelopardalis*), Grevy’s zebras (*Equus grevyi*), elands (*Taurotragus oryx*), cape buffalos (*Syncerus caffer*), lions (*Panthera leo*), leopards (*P. pardus*), cheetahs (*Acinonyx jubatus*) and spotted hyenas (*Crocuta crocuta*).

The more common avian fauna in the study area comprises approximately 75 species (Ogada et al.
2008), of which nine are seasonal migrants. Common raptors include Rueppell’s Vulture (*Gyps rueppellii*) and African White-backed Vulture (*G. africana*), Black-winged Kites (*Elanus caeruleus*) and Eurasian Kestrels (*Falco tinnunculus*), which are seasonal migrants.

Study Design. This research was conducted within a long-term herbivore exclusion experiment (Kenya Long-term Exclusion Experiment, or KLEE; Young et al. 1998) that was established at MRC in 1995. KLEE consists of a randomized block design, with three replicates of six treatments. The six treatments selectively exclude different combinations of wild and domestic herbivore species and each treatment is 200 m × 200 m, or 4 ha. The total area surveyed was 1.12 km².

Raptor Surveys. We sampled raptors as part of a larger experiment that examined the effects of herbivores on small mammals (Keesing 2000). We conducted surveys from within six of the eighteen plots every month—three that excluded all large herbivores and three that allowed access to all large herbivores (Fig. 1). We sampled the same plots every month. We did not survey during November 2001, February 2002, and November 2003 due to excessive rainfall or other logistical complications, so we excluded the months of November and February from our analyses for all three years. Each survey was conducted between 10:00–12:30 H and was completed within three days. Surveys were conducted in late morning in order to include large vultures, which typically do not begin soaring until thermals are produced by solar heat (Brown 1971).

During surveys, observers walked the perimeter of each 200 m × 200 m plot, then walked diagonals through the center of each plot, scanning the horizon, trees, and ground for any perched, ground-roosting, walking, or flying raptors. Total walking time was approximately 30 min per plot. Plots were walked to ensure that all ground-roosting raptors (e.g., owls and harriers) were counted, because the grass height could reach 0.5 m in plots that excluded all large herbivores. We recorded all raptors observed using binoculars, regardless of whether the birds were inside or outside the plots. Raptors were identified to species level, when possible. Given the difficulty of identifying raptors, especially those flying at a distance, many were recorded only by group (i.e., vulture, falcon).

Large Herbivore Surveys. Estimates of large herbivore abundances were from two aerial censuses conducted January–March 2001 and February 2003 by the Laikipia Wildlife Forum and provide a sample count of large herbivores species in Laikipia District including the study area (Georgiadis and Ojwang 2001, Georgiadis et al. 2003).

Species were grouped for analyses. ‘‘Scavenging birds’’ included Rueppell’s Vultures, African White-backed Vultures, Lappet-faced Vultures (*Torgos tracheliotus*), Bateleurs (*Terathopius ecaudatus*), and Tawny Eagles (*Aquila rapax*). ‘‘Non-scavenging eagles’’ were Wahlberg’s Eagles (*A. wahlbergi*), Black- chested Snake-Eagles (*Circaetus pectoralis*), African Hawk-Eagles (*Hieraaetus spilogaster*), and Martial Eagles (*Polemaetus bellicosus*). ‘‘Hawks’’ included Augur Buzzards (*Buteo augur*), Eurasian Buzzards (*Buteo buteo*), and Eastern Chanting-Goshawk (*Melierax poliopterus*). We omitted harrier sightings, which included three unknown harriers (*Circaetus sp.*) and two Pallid Harriers (*G. macrourus*) because their numbers were so few. ‘‘Falcons’’ were Eurasian Kestrels and Pygmy Falcons (*Polihierax semitorquatus*). The only kite was the Black-winged Kite. We included ‘‘unknown’’ and harrier sightings for estimates of raptor abundance by year, but not for group-level analyses.

Because of their large ranges, raptors observed during the surveys of each KLEE treatment were not necessarily independent sightings. Therefore, we pooled data from all blocks and treatments. We conducted a correlation analysis between year (2001–2003) and the mean number of monthly sightings of all raptors for the first analysis, and of just scavenging birds for the second. We also performed a linear regression using the number of scavenging birds as the dependent variable and rainfall as the independent variable (rainfall was measured daily using a standard rainfall gauge as part of a weather station based at Mpala Research Centre).

Results

Raptor Surveys. From January 2001–December 2003 we had 535 raptor sightings comprising 16 species, three of which were palearctic migrants. Of the species that were identified, the most common were *Gyps vultures* (69%) followed by Black-winged Kites (5%) and Tawny Eagles (4%).

The mean number of raptors observed each month declined significantly over time (*P* = 0.05). Raptors declined 40% in the first year and 48% in the second, for an overall decline of 68% between 2001 and 2003. Scavenging birds accounted for most of the decline, although the correlation be-
between year and mean monthly sightings of scavenging birds was not significant ($P = 0.40$; Fig. 2). Scavenging birds declined approximately 50% per year and a total of 70% over the study period. Sightings for other raptor groups were too infrequent to permit analysis. The number of scavenging birds was not related to rainfall ($P = 0.28$).

DISCUSSION

In our surveys, raptors declined by 68% over three years. Scavenging birds were primarily responsible for this decline (Fig. 2). Scavenging birds, especially vultures, are declining worldwide due to poisoning, persecution, food shortages, and land-use changes (Pain et al. 2003, Thiollay 2006). Precipitous declines have occurred in West Africa (Thiollay 2006) and recent catastrophic population crashes have garnered attention in South Asia (Oaks et al. 2004, Prakash et al. 2003, Green et al. 2004). Our results suggest that this pattern is occurring in East Africa as well.

Because we sampled only a small area, the declines we observed may have resulted from a change in space use by scavenging birds rather than a re-

![Figure 2. Annual monthly mean (+SE) number of raptor sightings during 2001–03, by raptor group. Species in each group are described in the text.](https://bioone.org/journals/Journal-of-Raptor-Research on 16 Oct 2020 Terms of Use: https://bioone.org/terms-of-use)
gion-wide population decline. Dispersion in sub-
tropical African raptors is usually related to rainfall
(Brown 1971, Herremans and Herremans-Tonnoeyr
2000). Rainfall at the study site during the period of
our observations was not unusual in magnitude or
distribution, and we detected no significant effect of
rainfall on scavenging bird abundance. However, we
cannot rule out the possibility that scavenging birds
in our study area relocated to other sites. Neverthe-
less, abundance at our site declined significantly,
whether these declines represent local or region-
wide declines.

One hypothesis to explain the rapid decline we
observed at the study site is a lack of available food.
Large vultures in particular feed mainly on carrion of
large- and medium-sized mammals and are obligate
scavengers (Ruxton and Houston 2004). However,
during the study period, wild herbivores in Laikipia
District increased by 9% and domestic herbivores,
especially sheep and goats, increased by 37% (Geor-
These data suggest that low food availability was not
the primary cause of the declines in scavenging birds.

Another potential explanation for raptor decline
is mortality from infectious disease. Although this
hypothesis could not be ruled out, it seemed unlikely
in our study region, as there were no reports of
scavenging birds, e.g., vultures, dying of natural
causes at a number of colonies where monitoring
is ongoing (M. Virani pers. comm.). Infectious dis-
case does not appear to be a major cause of mortal-
ity in Gyptis vulture populations in southern Africa
(Benson 2000).

A third hypothesis is that scavenging birds were
poisoned at carcasses. Vultures are particularly vul-
nerable to poisoning, because they can rapidly con-
gregate in large numbers at a carcass. Thus, one
poisoned carcass can affect a large number of birds
(Netton 1979). Indeed, reports of mass vulture poi-
sonings within Africa are numerous (Borello 1985,
groups of neurotoxic pesticides, the organopho-
sorous and carbamate compounds, tend to be very
acutely toxic to birds and cases of mortality are fre-
quently reported (e.g., Mineau et al. 1999, Mineau
2005). Because of their acute toxicity, carbofurans
are frequently implicated in abuse cases where rapi-
tors or other vertebrates are targeted directly
(Mineau et al. 1999). Carbofuran, sold under the
trade name Furadan, is an agricultural pesticide
that is legally sold throughout Kenya, and its use
as a cheap, effective poison is well known among
farming communities in Kenya (Ogada and Ki-
buthu 2008). In Laikipia District soil, water and
plant samples have shown high environmental con-
tamination with concentrations of carbofuran and
its two toxic metabolites (Otieno et al. 2010).
Recent studies have implicated carbofuran in the mor-
tality of African White-backed Vultures near our
study site (Otieno et al. in press a, Otieno et al. in
press b). These reports also confirmed widespread
involvement of carbofuran in vulture poisoning in-
cidents throughout Kenya (Mije 2009, Otieno et
al. in press a, Otieno et al. in press b). Vultures, and
perhaps other scavenging birds, may have become
unintended victims of poisoning of predators that
occurs following livestock depredation events
(Otieno 2009). Whether poisoning explains the rap-
id decline in abundance of scavenging birds at our
site is currently under investigation.

Scavenging birds provide some of the most im-
portant yet underappreciated ecosystem services of
any avian group (Houston and Cooper 1975, De-
Vaul et al. 2003, Sekercioglu 2006). Yet among
birds, nearly 40% of vultures are extinction-prone,
more than any other functional group (Sekercioglu
et al. 2004). All the vulture species observed during
our study are on the IUCN Red List of Threatened
Species (IUCN 2009). The apparent decline of scav-
enging birds that we observed in central Kenya war-
rants population monitoring to understand whether
decrees are local or regional and to elucidate caus-
es of population decreases.

ACKNOWLEDGMENTS

We gratefully acknowledge the support and coopera-
tion of the Ministry of Education of the Republic of
Kenya and Kenyatta University. This research was sup-
ported by a National Science Foundation grant (DEB
CARREER 0196177) to FK. The KLEE plots were built
and maintained with grants from the James Smithson
Fund of the Smithsonian Institution (to Alan Smith),
the National Geographic Society (4691-91), the National
Science Foundation (BSR-97-07477 and BSR-03-16402),
and the African Elephant Program of the U.S. Fish and
Wildlife Service (98210-0G563; to T.P. Young). Logistical
support was provided by Mpala Research Centre, Truman
Young, Mordecai Ogada, Kerry Outram, Nick Georgiadiis,
Heather Wallington, and Bard College. In 2002, surveys
were led by Brian Allan, Douglas McCauley led some field
surveys in 2003. Field assistance was provided by Abdika-
dir Ali Hassan, James Ponoto, and Kadir Age. Discussions
with the Bird Committee of Nature Kenya, Paula Ka-
humbu, Laurence Frank, Martin Odino, Munir Virani,
Simon Thomsett, and Joseph Lalah were instrumental
in the preparation of this manuscript. The manuscript
was improved by comments from Simon Thomsett and
two anonymous reviewers.
LITERATURE CITED

Received 24 June 2009; accepted 15 January 2010