Matthew J. Stuber
Journal of Raptor Research 52 (2), 191-206, (1 June 2018) https://doi.org/10.3356/JRR-17-18.1
KEYWORDS: burrowing owl, Athene cunicularia, cholinesterase, DDT, eggshell thickness, Idaho, insecticide, pesticide, p,p′-DDE
Western Burrowing Owls (Athene cunicularia hypugaea) frequently nest near agricultural lands. In southwestern Idaho, greater population density in agricultural landscapes appears to be driven in part by reliable and abundant prey populations. However, these potential benefits may be offset if agricultural land use increases pesticide exposure, especially during the sensitive reproduction period. Thus, we investigated the extent to which Burrowing Owls nesting near croplands within the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA), Idaho, were exposed to organophosphate (OP), carbamate (CB), and/or organochlorine (OC) pesticides. We examined plasma cholinesterase activity, OP and CB residues in foot-wash samples, and OCs in soils and whole egg contents collected from owls and their nests along a distance gradient from agricultural fields. We further measured eggshell thickness to assess potential for thinning from OC exposure. There was no inhibition of cholinesterase activities in adult or nestling owls near agriculture, and foot-wash samples from adults tested negative for OP and CB pesticides. The OC p,p′-DDE, a metabolite of DDT, occurred in eggs at 27 of 58 nests, but there was some evidence that concentrations increased with increasing distance from agriculture. Concentrations of p,p′-DDE in eggs were relatively low compared to harmful levels in other avian species, were not correlated with eggshell thickness, and did not appear to reduce nesting success. Neither DDT, its metabolites, nor any other OCs were detected in soil samples from local owl breeding areas. These results indicate that p,p′-DDE, organophosphate, and carbamate exposure were not causing toxicity or reproductive impairment of Burrowing Owls in the NCA during our study years.