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Abstract. Aquatic ecosystems and their fauna are vulnerable to a variety of climate-related changes.
Benthic macroinvertebrates are used frequently by water-quality agencies to monitor the status of aquatic
resources. We used several regionally distributed state bioassessment data sets to analyze how climate
change might influence metrics used to define ecological condition of streams. Many widely used,
taxonomically based metrics were composed of both cold- and warm-water-preference taxa, and differing
responses of these temperature-preference groups to climate-induced changes in stream temperatures
could undermine assessment of stream condition. Climate responsiveness of these trait groups varied
among states and ecoregions, but the groups generally were sensitive to changing temperature conditions.
Temperature sensitivity of taxa and their sensitivity to organic pollution were moderately but significantly
correlated. Therefore, metrics selected for condition assessments because taxa are sensitive to disturbance
or to conventional pollutants also were sensitive to changes in temperature. We explored the feasibility of
modifying metrics by partitioning components based on temperature sensitivity to reduce the likelihood
that responses to climate change would confound responses to impairment from other causes and to
facilitate tracking of climate-change-related taxon losses and replacements.

Key words: climate change, biological indicators, biological metrics, multimetric indices, vulnerability,
biomonitoring, macroinvertebrates.

Water-quality agencies measure responses of bio-
logical indicators to assess the status and health of
ecosystems and to establish biological criteria for
defining acceptable condition of communities in
rivers and streams regulated under the 1972 US Clean

Water Act (CWA; section 303[c][2][B]) and 304[a][8]).
Stream benthic invertebrates are used frequently for
biomonitoring in the US (USEPA 2002). Climate
change has the potential to alter benthic invertebrate
communities, and therefore, their use as the basis for
assessments of stream condition and CWA-related
management decisions. Thus, climate-related shifts in
benthic community structure are relevant to bioas-
sessment efforts (Dolédec et al. 1996, Daufresne et al.
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2003, 2007, Mouthon and Daufresne 2006, Bêche and
Resh 2007, Burgmer et al. 2007, Durance and Ormerod
2007, Collier 2008, Chessman 2009). However, the
vulnerabilities of bioassessment/biomonitoring to
climate-related shifts in community structure have
not been evaluated.

Assessment of stream status requires distillation of
data on macroinvertebrates, fish, or other stream
assemblages into a format that reflects biological
responses to environmental conditions. Multimetric
indices (MMIs) and predictive modeling are 2
approaches frequently used to distill biomonitoring
data. Both are grounded in the assumption that
environmental conditions, both natural (e.g., climate,
physiography, geology, soil type) and anthropogenic
(e.g., land use, pollutant discharges), drive the
structure and functioning of biological communities
(e.g., Poff and Ward 1990, Allan 1995), so that
expectations for reference-community composition
and responses of disturbed communities can be
compared as indicators of degradation (e.g., Barbour
et al. 1999, Hawkins et al. 2010). Any metrics or
indices of community condition must be readily
compared between reference and test locations (Her-
ing et al. 2006a, b). We focused on evaluating shifts in
some commonly used metrics and in reference-
community composition and assessed their potential
effects on site-condition classifications.

MMIs generally are structured as composites of
biological metrics selected to capture ecologically
important community structural or functional char-
acteristics and have been applied to fish and benthic
macroinvertebrate communities (Karr 1991, Barbour
et al. 1995, DeShon 1995, Yoder and Rankin 1998,
Sandin and Johnson 2000, Böhmer et al. 2004, Norris
and Barbour 2009). Component metrics are selected
based on their responsiveness to the environmental
effects most often evaluated (Barbour et al. 1999,
Hering et al. 2006b, Johnson et al. 2006). Sites are
assessed by comparing the MMI score for the test site
to values at comparable reference sites. Predictive
models use regional reference conditions to develop
relationships between environmental predictor vari-
ables and macroinvertebrate taxon occurrence from
which predictions for an expected (E) community are
based. A commonly applied model for macroinverte-
brate communities is the River InVertebrate Predic-
tion And Classification System (RIVPACS) (Wright
2000). An important assumption is that the predictor
variables are minimally affected by human distur-
bance and are relatively invariant over ecologically
relevant time (Wright et al. 1984, Hawkins et al. 2000,
Wright 2000, Tetra Tech 2008). The E community is
then compared to various observed (O) communities

at nonreference locations. A basis for comparison is
that any differences between O and E communities
reflect biological responses to the range of environ-
mental pollutants or alterations that are intended to
be evaluated. For both approaches, the underlying
assumption of site comparisons is that degradation in
metrics or scores reflects responses of the aquatic
community to stressors.

Climate change is a stressor that is likely to affect
MMI scores. Thus, MMIs must be evaluated to
determine: 1) their responsiveness to climate change,
2) whether responses to climate change can be
differentiated from responses to conventional stress-
ors, and 3) whether they will continue to be useful
tools for attributing likely causes of degradation.

The International Panel on Climate Change (IPCC;
IPCC 2001) defined vulnerability as the extent of
susceptibility of a system to sustaining damage from
climate change, including variability in climate (see
also Hurd et al. 1999). Vulnerability is affected by
degree of exposure and by sensitivity. Vulnerability of
biological indices and metrics can be judged on the
basis of existing evidence of biological responses to
climate change (exposure), the range of metric
responses to climate-related changes in temperature
(sensitivity), and the effect of observed changes in
metrics on site-condition classifications. We examined
bioassessment data sets from 3 US states (Maine,
North Carolina, Utah) to assess the vulnerability of
biological metrics and indices to climate change.
Bioassessment of wadeable streams is based on MMIs
in Maine and North Carolina and on predictive
modeling in Utah. These states are representative of
major ecoregions of the US, and the data sets
encompass large-scale variations in current and future
climatic conditions, geography, topography, geology,
and hydrology. Thus, our results provide a regional
view of climate-change implications for commonly
used MMIs and predictive models.

Methods

State biomonitoring data sets

We used biomonitoring data sets from Maine,
North Carolina, and Utah for our analyses because
they are relatively long-term data sets of high quality.
Macroinvertebrate collection methods and assessment
techniques differ among these states.

Utah.—The protocol used by Utah Division of
Water Quality (DWQ) calls for quantitative samples
collected from riffle habitats with the US Environ-
mental Protection Agency (EPA) Environmental
Monitoring and Assessment Program (EMAP) kick
method (UTDWQ 2006). Samples are collected during
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an autumn index period (typically September/Octo-
ber), and a RIVPACS-type model is used as a basis for
site-condition classification. The model has 15 predic-
tor variables, and 7 are related to climate (e.g.,
temperature, precipitation, freeze dates).

Maine.—The protocol used by Maine Department of
Environmental Protection (DEP) calls for use of
artificial substrates (rock bags or baskets) to collect
quantitative samples during late-summer, low-flow
periods (July 1–September 30). Site condition is rated
with a set of 4 linear discriminant models that
incorporate 30 input metrics or indices, and sites are
assigned to 1 of 4 classes (A, B, C, and NA, where A is
best condition and NA is nonattainment). The same
criteria are applied to all sites (Davies and Tsomides
2002).

North Carolina.—The collection method used by
North Carolina Department of Environment and
Natural Resources (NC DENR) depends on the
location and type of habitat. We limited our analyses
to samples collected between June and September
with the NC DENR full-scale collection method,
which calls for 2 kick samples, 3 sweep samples, 1
leaf-pack sample, 2 rock- or log-wash samples
collected in a fine-mesh sieve, 1 sand sample, and
visual collections (NCDENR 2006). Macroinvertebrate
abundance is rated as rare, common, or abundant. Site
condition is rated based on Ephemeroptera, Plecop-
tera, Trichoptera (EPT) taxa richness and the Hilsen-
hoff Biotic Index (HBI; Hilsenhoff 1987) modified for
application in North Carolina (Lenat 1993). Typically,
taxa are assigned pollution-tolerance values ranging
from 1 (most sensitive) to 10 (most tolerant). Sites in
North Carolina are assigned to 1 of 5 condition
classes: excellent (5), good (4), good/fair (3), fair (2),
or poor (1). Different scoring criteria are applied in
each major ecoregion (Blue Ridge Mountain, Pied-
mont, Mid-Atlantic Coastal Plain).

Sites used for analyses

From each state database, we selected reference
sites with the longest-term (§9 y) biological data for
analysis of long-term trends and temperature–year
patterns. Our data set included 2 sites in the Wasatch
and Uinta Mountain ecoregion in Utah (UT-1 and UT-
4) and 2 sites in the Colorado Plateau ecoregion in
Utah (UT-2 and UT-3), 3 sites in the Laurentian Plains
and Hills ecoregion in Maine (ME-1, ME-2, and ME-
3), and 1 site in the Blue Ridge Mountain ecoregion in
North Carolina (NC-1) (Table 1). We used 3 addition-
al reference sites in North Carolina (NC-2 to 4,
Table 1) with slightly shorter data records (7 y) to
assess the potential effects of climate responses on
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site-condition classifications. These sites were desig-
nated by the respective state agencies as reference
(least-disturbed, best-available) sites. We focused on
reference sites to minimize possible influence of other
anthropogenic stressors. However, the distribution of
land uses within a 1-km buffer zone around each site
suggested that anthropogenic influences, indicated by
% urban and % agricultural land use, sometimes
exceeded what might be ideal for a reference
characterization (Table 1). Land use was ,16% urban
at 2 sites in Maine and ,23% agricultural at 1 of these
sites. Land use was ,3 to 5% urban at the 4 Utah sites,
but was 21% agricultural at 1 site. Land use was 12 to
25% urban at the North Carolina reference sites, with
,13% agricultural at one of these, but only 0 to 3%

agricultural at the other 2 North Carolina sites.
We also used data from sites in Maine and North

Carolina as case studies with which to explore the
potential effects of climate change on commonly used
bioassessment metrics and assessment outcomes. We
used 3 additional reference sites in North Carolina (1
in the Blue Ridge Mountain ecoregion, and 2 in the
Piedmont ecoregion) to analyze effects of potential
range shifts of taxa in response to climate change. In
Maine, we used all bioassessment stations to describe
the average and range of each metric among the 4 site-
condition classes.

Data management

We screened and corrected data sets to reflect
changes during the period of record in collection
methods, sample processing/subsampling methods,
taxonomists, and taxonomic protocols. We excluded
ambiguous taxa from analyses by developing (as
needed) operational taxonomic units (OTUs) (Cuffney
et al. 2007). Genus-level OTUs generally were most
appropriate, but some exceptions occurred (e.g., a
family-level OTU was needed for Chironomidae in
Utah to account for inconsistencies among taxonomic
laboratories).

We used weighted averaging or maximum-likeli-
hood inferences to assign invertebrates to tempera-
ture-preference categories in each biomonitoring
database (see Stamp et al. 2010 for details). We ranked
organisms based on percentiles of the distribution of
temperature optima for all invertebrate taxa in each
state data set. We categorized taxa with optima values
,40th percentile as cold-water-preference taxa and
taxa with optima values .60th percentile as warm-
water-preference taxa. We modified these assign-
ments as necessary after considering temperature-
preference classifications in traits databases (Poff et al.
2006b, Vieira et al. 2006), weighted-averaging results

based on data from other states in the same region,
taxon distributions among warmer and colder
streams in the states analyzed (USEPA 2010), litera-
ture reviews, and best professional judgment from the
regional advisory groups.

Temperature and year trend analyses

Annual point measurements of temperature made
in conjunction with biological sample collections are
inadequate to characterize annual average tempera-
ture regime, categorize hottest and coldest years, or
analyze long-term temperature trends. We used
Parameter-elevation Regressions on Independent
Slopes Model (PRISM) annual average maximum
and minimum air-temperature data (PRISM Climate
Group, Oregon State University, Corvallis, Oregon;
http://www.prismclimate.org) to supplement the
limited water-temperature data available in the state
data sets. The PRISM model uses a digital elevation
model and point measurements of climate data to
generate estimates of annual, monthly, and event-
based climatic variables. We used geographical
information system (GIS) software (ArcGIS 9.2; ESRI,
Redlands, California) to obtain minimum and maxi-
mum annual site-specific air-temperature values from
1975 to 2006 (USEPA 2010). We used mean (average of
maximum and minimum) annual air temperatures to
analyze long-term temperature trends and to catego-
rize years in terms of relative temperatures. Air and
stream temperatures are correlated, but the magni-
tude and seasonal patterns of changes in stream water
temperatures are likely to vary regionally because of
factors such as the influence of water sources,
watershed characteristics, and season (Daufresne et
al. 2003, Caissie 2006). We assumed that mean air
temperature was an acceptable surrogate for mean
water temperature for comparison of relative temper-
ature among years and grouped years as coldest,
normal, or hottest based on PRISM annual average air
temperature values for years during which the
biological samples were collected (Stamp et al. 2010).
Coldest years had mean annual air temperatures
,25th percentile of the overall data set, normal years
had temperatures between the 25th and 75th percen-
tiles, and hottest years had temperatures .75th

percentile values.

Responses of commonly used metrics

The HBI and EPT metrics (e.g., relative abundance
or richness of EPT taxa, relative abundance or
richness of taxa within the EPT) are used commonly
in bioassessment indices. For example, in Maine, 8 of
the input metrics used in the discriminant models are
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related to EPT taxa and 1 is the HBI. In North
Carolina, only EPT richness and the HBI are used in
an MMI to classify site condition. Utah recently
adopted use of a RIVPACS predictive model to assess
site condition, but most other southwestern states
currently use MMIs. Several southwestern states,
including Idaho, New Mexico, Colorado, Nevada,
Wyoming, Montana, and Arizona, incorporate rich-
ness or relative abundance of EPT taxa, Ephemer-
optera taxa, Plecoptera taxa, or Trichoptera taxa in
their MMIs. The HBI also is used in several
southwestern states.

We used 1-way analysis of variance (ANOVA) to
compare various EPT metrics and the HBI among
hottest-, normal-, and coldest-year groups. We used
Pearson product–moment correlations to test relation-
ships among biological metrics (e.g., various EPT
richness and abundance metrics, HBI values) and
mean annual temperature or year. We examined
correlations between HBI pollution-tolerance rank-
ings and taxon temperature-preference optima (see
Stamp et al. 2010 for details) to investigate potential
vulnerability of the HBI metric to climate-change
effects. We used Statistica software (version 8.0;
StatSoft, Tulsa, Oklahoma) for all analyses.

MMI vulnerabilities

Maine.—Vulnerabilities of linear discriminant mod-
els to long-term temperature changes were difficult to
evaluate because discriminant models test multiple
variables simultaneously. Therefore, extrapolating the
effect of climate-change on an individual input
variable to assessments of site condition is problem-
atic. Moreover, no firm thresholds or values of
individual metrics can be identified at which an
assessment of condition will change. We used
ANOVA to identify component metrics that were
particularly influential in differentiating between site-
condition classes (see USEPA 2010 for detailed
results) in conjunction with tests of climate-related
sensitivities of these metrics (see Responses of common-
ly used metrics above) to infer vulnerabilities of the
models to climate change.

North Carolina.—Observed biological responses to
climate change include shifts in geographical ranges
of sensitive taxa. These shifts often involve move-
ments to higher latitudes or elevations. One conse-
quence of such movements is that communities at
higher latitudes or altitudes tend to become more
similar to communities at lower latitudes or eleva-
tions (Bonada et al. 2007a). We used the North
Carolina MMI to assess potential consequences of
this type of climate-change effect on site-condition

classifications. In one scenario, we removed all cold-
water-preference taxa from the annual data set for
sites in the Blue Ridge Mountain ecoregion (on
average, cold-water-preference taxa are more abun-
dant in Blue Ridge Mountain sites than in Piedmont
or Mid-Atlantic Coastal Plain sites; Table 2) and
recalculated the HBI, EPT richness, and site-condition
scores. In another scenario, we applied Blue Ridge
Mountain scoring criteria to data from 2 Piedmont
sites and evaluated the degree to which site-condition
scores changed.

Modified metrics using temperature-preference traits

We modified 2 common invertebrate metrics to
assess their ability to account for climate-related
trends in cold- or warm-water-preference taxa sepa-
rately from other stressors. We examined the ratio of
cold- or warm-water-preference taxa to total inverte-
brate taxon richness (cold-to-total, warm-to-total) as
an addition to the commonly used total invertebrate
community richness metric. We also examined the
ratio of cold- or warm-water-preference EPT taxon to
total EPT taxa (cold-to-total EPT, warm-to-total EPT).
We applied these modified metrics to the reference-
site data sets from Utah, Maine, and North Carolina.
We used 1-way ANOVA to compare these modified
metrics among hottest-, normal-, and coldest-year
groups.

Results

Temperature and year trend analyses

At sites UT-1 and UT-2, richness of total, EPT,
Ephemeroptera, and Plecoptera taxa was significantly
lower in the hottest- than in the coldest-year group
(Table 3; USEPA 2010). The linear relationship be-
tween EPT richness and temperature can be used to
infer a loss rate of ,3 EPT taxa for every 1.0uC
increase in air temperature in the Wasatch and Uinta
Mountain ecoregion (Fig. 1A). The median number of
EPT taxa at site UT-1 was ,13 to 14 taxa. Based on a
projected temperature increase of 2uC over the next
40 y (i.e., by 2050; National Center for Atmospheric
Research website: http://rcpm.ucar.edu), an average
of 6 taxa could be lost (.40% of total EPT richness).
The inferred loss rate (,1.5 EPT taxa/1.0uC) was
lower at site UT-2, which is at a lower elevation than
site UT-1 (Fig. 1B). At site ME-1, total richness and
EPT richness did not differ among hottest-, coldest-,
or normal-year groups. This site is in the Laurentian
Hills and Plains, with a relatively low elevation and
has few cold-water-preference taxa. At the shorter-
duration reference station in the Maine Northeast
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Highlands (ME-2), EPT taxa richness was significantly
positively correlated with temperature; however, the
trend with year was not significant (USEPA 2010). The
remaining bioassessment data records did not show
significant trends in EPT taxa over time or with
temperature (USEPA 2010).

The correlations between temperature-preference
optima and HBI tolerance values were statistically
significant but weak (Maine: r = 0.29, p = 0.0013;
North Carolina: r = 0.53, p = 0.000; Utah: r = 0.2851, p
= 0.0034). Except for the chironomids Larsia and
Natarsia, most cold-water-preference taxa in Maine
had low (ƒ3) HBI tolerance values. However, warm-
water-preference taxa in Maine had a mix of HBI
tolerance values (9 had values §7, 10 had values ƒ3).
In North Carolina, most (22 of 30) of the cold-water-
preference taxa had low tolerance values (,3). Only
one cold-water-preference taxon (the chironomid
Diamesa) had a tolerance value .7. In contrast, 12 of
the warm-water-preference taxa had tolerance values
.7, and only one warm-water-preference taxa, Chi-
marra, had a tolerance value ,3.

Based on this information alone, a loss of cold-
water-preference taxa and an increase in warm-water-
preference taxa probably would result in higher HBI
scores, which would contribute to lower site-condi-
tion classifications. For example, in North Carolina, an
increase in the HBI score of 0.1 would reduce the
classification of an excellent site from 5 to 4. At lower-
quality sites (score ƒ 4), an increase in the HBI score
of 0.6 would reduce the classification 1 full level.

Responses of commonly used metrics and
MMI vulnerabilities

Maine.—Many of the discriminant model input
metrics were related to EPT taxa and were influential
in defining site-condition classifications. On average,
higher values for the EPT richness metric occurred at
A-quality sites than at sites in other condition classes
(Fig. 2A). We explored the mix of cold- and warm-
water-preference taxa within these EPT and related
metric groups to understand potential vulnerability of
these metrics to climate change. In Maine, 28 of 39
cold-water-preference taxa were EPT taxa, whereas 18

FIG. 1. Correlations of Ephemeroptera, Plecoptera, Tri-
choptera (EPT) taxa richness (EPT taxa) with mean annual
Parameter-elevation Regressions on Independent Slopes
Model (PRISM) air temperature at Wasatch and Uinta
Mountain long-term reference site UT-1 (r = 0.5679, r2

=

0.3225, p = 0.0174) (A) and Colorado Plateau long-term
reference site UT-2 (r = 0.7919, r2

= 0.6271, p = 0.0007) (B).
Dashed curves indicate 95% confidence intervals.

FIG. 2. Box plots of the Maine Ephemeroptera, Plecop-
tera, Trichoptera (EPT) generic taxon richness metric
averaged among site-condition classes (A is best, NA is
nonattainment) (A) and among coldest-, normal-, and
hottest-year groups at site ME-1 (B).
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of 40 warm-water-preference taxa were EPT taxa
(Appendix). Richness of EPT taxa was higher during
warm years (Fig. 2B), in part because a large number
of EPT taxa were warm-water-preference taxa. The
difference between A-quality and B-quality sites in
the mean number of EPT taxa (2–3 taxa) was well
within the range of difference between coldest and
hottest years in the mean number of EPT taxa
(Fig. 2A, B). Thus, increases in the number of warm-
water-preference EPT taxa as temperature increases
with climate change could result in an apparent
improvement in site-condition classifications.

Two of the model input metrics used in Maine were
related specifically to Ephemeroptera (abundance and
relative abundance). More warm-water-preference
Ephemeroptera taxa (9) than cold-water-preference
Ephemeroptera (3) occurred in Maine. Mean values of
the Ephemeroptera abundance metric were highest
at B-quality sites and lower at both A- and C-quality
sites (Fig. 3A). Thus, the site-condition classification
of a C-quality site might improve, whereas that of
an A-quality site might degrade if the abundance
of warm-water-preference Ephemeroptera increased
consequent to climate change. However, the relative
abundance (% composition) of Ephemeroptera was
greatest at A-quality sites and decreased with
decreasing site condition (Fig. 3B). Thus, the influence
of increases in warm-water-preference Ephemerop-
tera caused by climate change on this metric will
depend on the net responses of other warm- and cold-
water-preference taxa.

Cold-water-preference taxa like Plecoptera also
were expected to be sensitive to climate change. Three
Plecoptera metrics (Plecoptera abundance, Perlidae
abundance, and relative Plecoptera richness) were
used as inputs to the Maine discriminant model.
Highest Plecoptera abundances or richness occurred
at A-quality sites, and site-condition classifications
decreased as values of Plecoptera metrics decreased
(USEPA 2010). Many more Plecoptera taxa were cold-
than warm-water-preference taxa in Maine (Appen-
dix), but Plecoptera metrics were not correlated with
temperature and did not differ among hottest-,
normal-, or coldest-year groups (USEPA 2010). Thus,
changes are not expected in Plecoptera metrics in
response to climate change.

Two model input metrics related to Trichoptera,
Hydropsyche abundance and Cheumatopsyche abun-
dance, were not correlated with temperature and
did not differ among hottest-, normal-, or coldest-year
groups (USEPA 2010). Neither taxon was a cold- or
warm-water-preference taxon in Maine and neither is
viewed as particularly sensitive to temperature. Thus,
these taxa are likely to be resilient to climate change.

Many Diptera occurred on both cold- and warm-
water-preference lists (Appendix). Seven of 39 cold-
water-preference taxa were Diptera (Chironomidae),
and 10 of 40 warm-water-preference taxa were
Diptera (Appendix). In the discriminant model, high
abundance or richness of Diptera taxa tended to cause
a low site-condition classification, even though
several Diptera were classified as cold-water-prefer-
ence taxa (USEPA 2010). Cold- and warm-water-
preference Diptera are expected to respond differently
to climate change. Thus, the effects on Maine model
outcomes are likely to be variable and unpredictable
and might depend on whether cold-water-preference
taxa are replaced by warm-water-preference taxa.

North Carolina.—The North Carolina MMI is com-
posed of an EPT richness metric and the North
Carolina HBI. Twenty of 32 cold-water-preference
taxa (genus-level OTUs) in North Carolina are EPT
taxa, whereas only 5 EPT taxa in North Carolina are
warm-water-preference taxa (Appendix). Removal of
cold-water-preference EPT taxa from the data set for 1
Blue Ridge Mountain reference site (NC-1) resulted in
the loss of 1 to 4 EPT taxa and a reduction in the EPT
richness score of up to 0.6 (Fig. 4A), where each unit
score represents the difference between a site-condi-
tion classification (e.g., excellent to good, good to fair).

FIG. 3. Box plots of Ephemeroptera abundance (A) and
relative abundance (B) averaged among site-condition
classes (A is best, NA is nonattainment) in Maine.
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At a 2nd Blue Ridge Mountain reference site (NC-2), 10
to 14 EPT taxa were lost when cold-water-preference
taxa were removed, and the EPT richness score
decreased by 0.4 to 1.2 (Fig. 4B). A loss of 3 (Mid-
Atlantic Coastal Plain ecoregion) or 4 (Blue Ridge
Mountain or Piedmont sites) EPT species from high-
quality sites would lower the EPT richness score from
5 (excellent) to 4 (good) (NCDENR 2006). A loss of 10
EPT taxa at Blue Ridge Mountain sites, 8 taxa at
Piedmont sites, or 7 at Mid-Atlantic Coastal Plain sites
would be needed to decrease EPT richness scores by 1
level at sites currently rated good or lower (NCDENR
2006).

Removal of cold-water-preference taxa from the
data sets for these 2 North Carolina Blue Ridge
Mountain reference sites resulted in increases in HBI
values from 0.03 to 0.24 at NC-1, and from 0.58 to 0.86
at NC-2. These changes corresponded to decreases in
HBI scores of up to 0.2 and 1, respectively (Fig. 5A, B).
Cold-water-preference taxa were less abundant at
NC-1 than at NC-2. In combination, the changes in
EPT richness and HBI metric scores from removal of
cold-water-preference taxa resulted in no net change
in site-condition classification in some years, a change
of up to 1 level (excellent to good) in 3 of 11 y at NC-1
and in 5 of 7 y at NC-2 (Fig. 6A, B).

Blue Ridge Mountain-ecoregion scoring criteria
were applied to Piedmont-ecoregion reference sites
(equivalent to replacing the Mountain ecoregion taxa
with the Piedmont ecoregion taxa) as an approxima-

tion of the outcome of range shifts of sensitive taxa. In
the most extreme case (i.e., complete community
replacement), site-condition classification of 1 Blue
Ridge Mountain site decreased 1 level (from 5 to 4;
Fig. 7A, B).

Modified metrics using temperature-preference traits

At site ME-1, the cold-to-total and warm-to-total
ratios did not differ significantly among coldest-,
hottest-, and normal-temperature years for the refer-
ence site (Table 3). The cold-to-total ratio appeared to
be slightly higher during the hottest years. However,
the number of cold-water-preference taxa at this site
was low, and the cold-to-total ratio was so low that
any apparent trend is misleading. The number of
cold-water-preference EPT taxa at this site was too
low to permit calculation of the cold-to-total EPT
ratio.

At site UT-1, the cold-to-total ratio was significantly
lower for the hottest-year group than for the other
year groups, but the warm-to-total ratio did not differ
among year groups (Table 3). The cold-to-total EPT
ratio was lower and the warm-to-total EPT ratio was

FIG. 4. Ephemeroptera, Plecoptera, Trichoptera (EPT)
richness scores before and after all cold-water-preference
taxa (cold taxa) were removed from the data sets for
reference sites NC-1 (A) and NC-2 (B). w/ = with.

FIG. 5. Hilsenhoff Biotic Index (HBI) scores before and
after all cold-water-preference taxa (cold taxa) were re-
moved from the data sets for reference sites NC-1 (A) and
NC-2 (B). w/ = with.
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higher for the hottest-year group than for other year
groups, but the number of cold- and warm-water-
preference EPT was low, so these trends were not
statistically significant. At UT-2, the cold-to-total and
cold-to-total EPT ratios were significantly lower and
warm-to-total and warm-to-total EPT was significant-
ly higher for the hottest-year group than for the other
year groups (Table 3).

At site NC-1, none of the modified metrics differed
among year groups (Table 3).

To visualize how much of the variation in the
traditional EPT richness metric could be explained by
the temperature-preference modified metrics, we
plotted all 3 metrics (EPT taxa richness, cold-to-total
EPT, and warm-to-total EPT) by year for UT-1 and
UT-2 (Fig. 8A, B). At site UT-1, EPT richness declined
significantly over time (Fig. 8A). The warm-to-total
EPT ratio did not change significantly over time.
However, the cold-to-total EPT ratio also decreased
significantly over time, and the regression slope was
similar to the slope for total EPT richness. At site UT-
2, total EPT richness and cold-to-total EPT declined
significantly over time, but the slope of the regression
for cold-to-total EPT was steeper (Fig. 8B). Moreover,
the warm-to-total EPT ratio increased over time
(Fig. 8B).

Discussion

Interactive effects of ecoregional characteristics and climate
change on bioassessment metrics

Evidence of invertebrate and other aquatic com-
munity responses to climate change is accumulating,
but the magnitude of effects from climate change is
often low compared to the magnitude of effects of
other large-scale spatial (e.g., land use) and temporal
(e.g., the North American Oscillation [NAO]) influ-
ences (Bradley and Ormerod 2001, Collier 2008,
Chessman 2009, Sandin 2009). We found tempera-
ture-related responses of benthic indicators and
metrics that are consistent with long-term climate-
change effects and that could be used to establish
future expectations for responses and to understand
implications of these responses to bioassessment-
based decisions. Responses were variable among sites
and ecoregions, but they included decreases in
richness or relative abundance of cold-water-prefer-
ence taxa, and in some areas, increases in warm-
water-preference taxa with increasing temperatures.
These results are consistent with those of other studies
that have reported significant increasing or decreas-
ing trends in macroinvertebrates based on the
thermophilic characteristics of the taxonomic group

FIG. 6. Final site-condition classification scores before
and after all cold-water-preference taxa (cold taxa) were
removed from the data sets for reference sites NC-1 (A) and
NC-2 (B). w/ = with, Mountain = Blue Ridge Mountain.

FIG. 7. Final site-condition classifications at 2 reference
sites, NC0075 (A) and NC0248 (B), in the Piedmont
ecoregion of North Carolina when Piedmont and Blue
Ridge Mountain (Mountain) scoring criteria were applied to
the site data sets.
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(Daufresne et al. 2003, Durance and Ormerod 2007,
Chessman 2009). Other widespread responses among
commonly used, taxonomically based metrics were
declining richness with temperature or over time of
Ephemeroptera, Plecoptera, EPT, and total taxa. These
responses can alter reference communities to a degree
that would affect decisions about site condition. Site
condition could be deemed degraded or even im-
proved simply because of taxon-specific responses to
climate change.

Temperature-preference groups generally were
sensitive to changing temperature conditions, but
responsiveness varied among ecoregions. Regional
variations in projected climate-change effects indicate
that not all ecoregions are equally vulnerable to
climate change (USEPA 2007, NCAR 2008, Schoof et
al. 2010). Many factors can influence susceptibility to

changing water temperature or hydrologic regime
from climate change. These factors include elevation
(Cereghino et al. 2003, Diaz et al. 2008, Chessman
2009), stream order (Minshall et al. 1985, Cereghino et
al. 2003), degree of groundwater influence, or factors
that affect water depth and flow rate, such as water
withdrawals (Poff 1997, Poff et al. 2006a, Chessman
2009).

Many taxonomic metrics are based on mixtures of
cold- and warm-water-preference taxa, and the
degree of mixing is related, in part, to ecoregional
characteristics, notably elevation. In all 3 states
evaluated, a greater proportion of cold-water-prefer-
ence taxa occurred in higher-elevation ecoregions and
a greater proportion of warm-water-preference taxa
occurred in low-elevation ecoregions (Table 2). Our
results suggested that elevation is one factor that

FIG. 8. Linear regressions for Ephemeroptera, Plecoptera, Trichoptera (EPT) taxon richness and the ratio of cold- or warm-
water-preference EPT taxon richness to total EPT taxon richness vs year for reference sites UT-1 in the Uinta and Wasatch
Mountains ecoregion (A) and UT-2 in the Colorado Plateau ecoregion (B) in Utah over the period 1985 to 2005.
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drives the temperature-trait composition of regional
benthic communities. In turn, the temperature-trait
composition of a community affects the vulnerability
of metrics and MMIs. State or tribal bioassessment
managers should consider focusing efforts to evaluate
and modify MMIs first in the most vulnerable, higher-
elevation ecoregions.

Responses of commonly used metrics and
MMI vulnerabilities

Utah.—Fairly predictable losses in EPT taxon
richness (especially cold-water-preference taxa) with
increasing temperatures have occurred at high- and
intermediate-elevation sites in Utah. Projected EPT
losses are as high as 40% by 2050. The potential effect
of this loss on bioassessment capabilities is too high to
ignore. Moreover, this projection of future losses was
based on a linear estimate over time, but we have no
reason to assume that the actual rate of taxon losses
will be linear, especially given year-to-year and
decadal-scale climatic variations. Thus, a linear
estimate might be a poor predictor of when south-
western regional MMIs or predictive models might
become incapable of differentiating reference from
impaired sites.

Maine.—The Maine bioassessment protocol is based
on a series of discriminant models that require inputs
of ,30 bioindicators. Therefore, other components of
the decision-making process regarding site condition
are vulnerable to climate change. For example, Maine
uses a group of Class-A indicator taxa as one metric
for separating Class-A from Class-B condition ratings.
Class-A indicator taxa are evenly divided between
cold- and warm-water-preference taxa. As tempera-
ture increases, application of this metric could
confound results of the models because some of the
Class-A indicators could decrease with increasing
temperatures, whereas others could increase (USEPA
2010). In contrast, North Carolina uses only the HBI
and EPT richness to classify site condition. Both of
these are vulnerable to effects of climate change on
temperature-sensitive taxa, but their effects on the
MMI are direct and easy to understand. Thus, size of
the effect ultimately realized in MMI-based site-
condition classifications will, in some part, be mod-
ified by the complexity of the MMI used.

North Carolina.—The HBI is vulnerable to expected
increases in water temperature because changes in the
temperature-trait composition of the community will
be confounded by the relationship between temper-
ature preferences and pollution tolerance. Decreases
in cold-water-preference taxa with low HBI tolerance
values or increases warm-water-preference taxa with

higher tolerance values will cause an increase in the
HBI. Because higher HBI values impart a more-
impaired site-condition classification, an increase in
HBI driven by shifts in temperature-trait composition
would result in a concomitant decrease in site-condition
classification. This vulnerability will be stronger in
regions like North Carolina where the correlation
between pollution tolerance and temperature prefer-
ences of taxa was strong and consistent. In other
regions, such as Maine, a more variable relationship,
especially between warm-water-preference taxa and
HBI tolerances, could lead to variability in HBI
vulnerability caused by spatial differences in commu-
nity composition of warm-water-preference taxa.

Modified metrics using temperature-preference traits

Cause cannot be determined from field observa-
tions or retrospective correlative analyses. Moreover,
causal assessment, like risk assessment, is retrospec-
tive rather than prospective. However, causes must be
considered to formulate corrective actions or to make
management or regulatory decisions. Therefore, in-
terpretation of bioassessment results often includes a
process of inferring likely causes from environmental
information on the area being evaluated (e.g., chem-
istry, land use, watershed conditions, discharges),
species autecological information, and toxicological
information (e.g., Beyers 1998, Suter et al. 2002). The
USEPA has structured this approach into a stressor-
identification process (USEPA 2000). In general,
biological indicators, which are combined into MMIs,
are used for their diagnostic value (Verdonschot and
Moog 2006). Sensitivity to climate change and
diagnostic capabilities of invertebrate indicators for
this stressor have received little consideration because
climate change was not considered a stressor of
concern until recently. Thus, the effects of progressive
changes in temperature and hydrological regimes on
existing metrics and MMIs are untested.

We focused on the relative contribution of cold- and
warm-water-preference taxa to particular component
metrics with the intent of tracking climate-related
taxon losses or replacements. Our preliminary eval-
uation indicates that a temperature-modified EPT
richness metric shows promise as a way to achieve
this goal. Separate tracking of cold-to-total EPT and
warm-to-total EPT richness metrics successfully ac-
counted for trends in total EPT richness over time
regardless of whether changes in total EPT richness
were caused by losses of cold-water-preference taxa
(UT-1; Fig. 8A) or by losses of cold-water-preference
taxa plus gains of warm-water-preference taxa (taxon
replacements; UT-2, Fig. 8B).
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Long-term increases in temperature have the
potential to confuse the diagnosis of altered condi-
tions as defined by many bioassessment metrics. For
example, decreases in total richness or EPT richness,
as observed at Utah reference sites, would be
evaluated in relation to a conventional stressor, such
as organic pollution. However, we found that
decreases in cold-water-preference taxa and perhaps
increases in warm-water-preference taxa caused by
increasing temperatures changed total and EPT
richness metrics. The magnitude of these changes
was similar to the magnitude of changes caused by
conventional stressors that would lead to classifica-
tion of a site as impaired. The additional information
provided by a temperature-modified metric could
alter the way in which site condition and probable
causes are interpreted. In this example, the additional
information would support a shift from a presump-
tion of pollution as the cause of the reduction in the
EPT richness metric to consideration of a tempera-
ture-related effect. Without some attempt to modify
traditional metrics to help characterize the contribu-
tion of climate change to changes in metrics, errone-
ous conclusions might be drawn, and conclusions of
pollution effects or habitat degradation will be
difficult to support.

We found a consistent moderate but significant
relationship between temperature sensitivity and
sensitivity to organic pollution, defined in the context
of the HBI. A similar relationship was reported for the
Ohio state biomonitoring data set (Rankin and Yoder
2009, USEPA 2010). Thus, metrics selected because
their component taxa are generally sensitive or
respond to conventional pollutants (Hilsenhoff 1987,
Lenat and Penrose 1996), also will be sensitive to
climate-related changes in temperature and flow
conditions. Increasing organic pollution could alter
the richness or relative abundances of cold- or warm-
water-preference taxa. Partitioning the HBI metric
according to the temperature-preference classification
of component taxa could provide evidence to distin-
guish probable effects of climate change from effects
of conventional pollution. This approach could be
used in a weight-of-evidence context, supported by
documentation of both temperature trends and
pollution status at a site.

Potential effects of losses of cold-water-preference taxa on
MMI-based assessments

Estimated quantitative effects on site-condition
classifications of changes in community composition
caused by changes in temperature-trait composition
varied. In some cases, changes in metric values were

not sufficient to affect site-condition classifications. In
other cases, they changed by 1 level (e.g., from
excellent to good, good to fair). For example, in North
Carolina, simulated loss of all cold-water-preference
EPT taxa because of increasing temperatures or
community replacement (mimicking migration of a
warmer-water Piedmont community into the Blue
Ridge Mountain ecoregion) reduced site-condition
classifications by 1 level. Full realization of either of
these 2 scenarios is unlikely and certainly would not
occur in the near term. However, they represent an
upper bound on expected vulnerability of MMIs in
the near future and illustrate the immediate impor-
tance of testing and adopting temperature-modified
metrics into bioassessment analysis frameworks.

We evaluated preliminarily the ability of a modified
metric to track temperature-related species replace-
ments, but we have not fully explored its ability to
quantify the proportion of changes caused by climate
change from the proportion caused by other stressors.
Such an analysis would require investigation of
modified metrics at a wide variety of nonreference
and reference sites, i.e., along a gradient of stressed
conditions, to examine combined responses to other
stressors and to climate change. Proportional changes
in temperature-trait groups (using modified metrics)
could be compared between nonreference (conven-
tional stressors plus climate change) and reference
(climate change only) sites to differentiate contribut-
ing causes.

The most valuable approach for incorporating
modified metrics into an analytical approach might
be to continue calculating the traditional metric (e.g.,
EPT richness, HBI), while adding new cold- and
warm-water-preference metrics. In this way, propor-
tional changes in cold- and warm-water-preference
taxa could be used to assess how much of the
difference in the total metric can be accounted for
by changes in temperature-trait groups. This compar-
ison could be made over time or among locations or
groups of sites (e.g., reference and nonreference). This
traits-based approach for detecting and tracking
effects of climate change is promising (Poff et al.
2010, Stamp et al. 2010), given that few taxa (genera or
species) in our study showed consistent climate-
related trends across the multiple sites and states
analyzed.

We tested only a temperature-modified EPT rich-
ness metric, but other climate-vulnerable and influ-
ential metrics (such as the HBI), metrics related to
Ephemeroptera, Plecoptera, or Trichoptera taxa, and
community diversity metrics also should be modified
into new metrics that account for temperature
preferences and tested within the bioassessment
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framework. For example, a climate-tolerant metric
could be used to help separate responses to climate
change and conventional stressors. Odonata, Coleop-
tera, and Hemiptera (OCH) taxa have been used as a
high-temperature/low-flow tolerant indicator be-
cause of their prevalence in summer conditions,
higher temperatures, and lower flows (Bonada et al.
2007b). OCH taxa increased over time, with increasing
temperatures, or with lower precipitation at some
sites in a study related to ours (USEPA 2010), results
that support potential use of OCH as a climate-
tolerant metric.

Limitations

Lack of information on temperature preferences for
many taxa currently limits development of climate-
sensitive or climate-tolerant metrics. We used bio-
monitoring data to develop temperature-preference
and tolerance information for many taxa common to
Maine, Utah, and North Carolina (Stamp et al. 2010).
Our approach could be used more broadly to support
development of temperature-modified metrics in
other states.

Data limitations prevent differentiation among
interannual, cyclical, and long-term, directional cli-
mate changes. However, the larger issue might be
how to use biomonitoring data to distinguish effects
of climate change from effects of other natural and
anthropogenic stressors. Durance and Ormerod (2009)
discounted climate as the cause of changes in stream
benthic assemblages that were correlated with long-
term (18 y) temperature increases at sites in southern
England. They argued that some of the faunal changes
included taxa with traits (e.g., preferences for high
flows and high dissolved O2) that were contrary to
expected responses to climate-driven increases in
stream temperatures. However, the observed biolog-
ical responses used to project biological-indicator and
MMI vulnerabilities in our study were based on
temperature traits that are mechanistically linked to
expected increases in water temperature consequent
to climate change. Our expectation of increasing
temperature was corroborated by significant (p ,

0.05) long-term increasing trends in air or water
temperatures in several of the ecoregions evaluated
and in numerous streams in the US (Kaushal et al.
2010, USEPA 2010). Many observed metric and MMI
responses were consistent with temperature increases.

We used data from reference sites to minimize
effects from conventional stressors so that responses
of benthic indicators to climatic variables could be
evaluated independently. However, several of our
study sites potentially were affected by human land

uses (agricultural and urban). Landuse changes in the
watersheds of reference sites could have affected our
long-term ability to separate climate change from
other landscape-scale stressors. Intensity of develop-
ment-related land use at some of our long-term
reference sites has been relatively stable over the
period of record (USEPA 2010). Thus, the influence of
urban and agricultural land use at those sites
probably has been consistent over the period of
record. Nevertheless, the interactions of climate
change and development pose a substantial concern
for biomonitoring programs in terms of data inter-
pretation and protection of sites in reference condi-
tion.

Few state biomonitoring programs have adopted
landuse criteria for defining and selecting references
sites, and no widely accepted criteria exist. However,
some southeastern states (e.g., Georgia, Alabama, and
South Carolina) apply landuse criteria for selection of
reference sites. These criteria are ,15% urban plus
,20% agricultural for high-gradient streams, and
,15% urban plus ,30% agricultural for low-gradient
streams (Barbour and Gerritsen 2006). A broad spatial
analysis of the relationships among population
density, land uses, water-chemistry constituents, and
benthic community characteristics in New England
states led Snook et al. (2007) to associate best-available
reference conditions with ƒ5% urban and ƒ10%

agricultural land use, a result that supports a lower
threshold for defining reference sites. Several of the
reference sites used in our study (2 in Maine and 1 in
North Carolina) had .15% urban land uses, and only
a few reference sites available for our study, mostly in
Utah, met the more stringent criteria. Additional
study and objective documentation to support specific
landuse criteria for definition of reference condition
will be important for developing and adapting
biomonitoring programs to incorporate climate-
change detection.

The period of record of a data set might determine
our ability to use it to assess effects of climate change.
For example, in the Wasatch and Uinta Mountains
and Colorado Plateau ecoregions in Utah, detection of
significant trends appeared to be determined by the
period of record of the data sets (trends detected at
.14 y but not at ƒ12 y). In the higher-elevation
Northeast Highlands ecoregion in Maine, a period of
record of 11 y was apparently too short to define
significant trends despite a predominance of cold-
water-preference taxa (USEPA 2010).

We rarely had .1 or 2 reference sites within an
ecoregion with sufficient data to conduct long-term
trends analyses, even within the relatively extensive
biomonitoring data sets used in our study. For
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example, 105 reference sites were in the North
Carolina biomonitoring data set, but long-term data
was available at only 3 of them. One site was in the
Blue Ridge Mountain ecoregion (11 y; Table 1), and 2
others had only 5 to 9 y of data (USEPA 2010).
Regional consistency of observed responses is difficult
to determine when spatial coverage and temporal
replication are limited. We will need to understand
how many sites and how long a period of record are
needed to detect effects of climate change before we
can modify and adapt biomonitoring programs to
account for climate change.
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DOLÉDEC, S., J. DESSAIX, AND H. TACHET. 1996. Changes within
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APPENDIX. Number of cold- and warm-water-preference taxa in each order in each state bioassessment data set. CWP = cold-
water preference, WWP = warm-water-preference.

Order

Maine North Carolina Utah

CWP WWP CWP WWP CWP WWP

Arhynchobdellida 1 1
Basommatophora 4 1
Coleoptera 1 1 1 2 1 3
Decapoda 1 1
Diptera 7 10 10 5 8 2
Dorylaimida 1
Ephemeroptera 4 9 6 1 6 2
Haplotaxida 1
Hemiptera 1 1
Hoplonemertea 1
Hydroida 1
Isopoda 1 1
Megaloptera 1 7
Mesogastropoda 1
Odonata 2 1 1 1
Plecoptera 14 3 8 10 1
Rhynchobdellida 2
Trichoptera 10 6 6 4 7 5
Unionoida 1
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