Two saltmarsh mosquitoes dominate the transmission of Ross River virus (RRV, Togoviridae: Alphavirus), one of Australia's most prominent mosquito-borne diseases. Ecologically, saltmarshes vary in their structure, including habitat types, hydrological regimes, and diversity of aquatic fauna, all of which drive mosquito oviposition behavior. Understanding the distribution of vector mosquitoes within saltmarshes can inform early warning systems, surveillance, and management of vector populations. The aim of this study was to identify the distribution of Ae. camptorhynchus, a known vector for RRV, across a saltmarsh and investigate the influence that other invertebrate assemblage might have on Ae. camptorhynchus egg dispersal. We demonstrate that vegetation is a strong indicator for Ae. camptorhynchus egg distribution, and this was not correlated with elevation or other invertebrates located at this saltmarsh. Also, habitats within this marsh are less frequently inundated, resulting in dryer conditions. We conclude that this information can be applied in vector surveillance and monitoring of temperate saltmarsh environments and also provides a baseline for future investigations into understanding mosquito vector habitat requirements.
How to translate text using browser tools
1 June 2017
Mosquito Distribution in a Saltmarsh: Determinants of Eggs in a Variable Environment
Raylea Rowbottom,
Scott Carver,
Leon A. Barmuta,
Philip Weinstein,
Geoff R. Allen
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Vector Ecology
Vol. 42 • No. 1
June 2017
Vol. 42 • No. 1
June 2017
Aedes camptorhynchus
Ostracods
oviposition
Ross River virus
saltmarsh
Sarcocornia