Translator Disclaimer
1 January 2008 Differentiating Migration and Dispersal Processes for Pond-Breeding Amphibians
Author Affiliations +

Understanding the movement of animals is critical to many aspects of conservation such as spread of emerging disease, proliferation of invasive species, changes in land-use patterns, and responses to global climate change. Movement processes are especially important for amphibian management and conservation as species declines and extinctions worldwide become ever more apparent. To better integrate behavioral and ecological data on amphibian movements with our use of spatially explicit demographic models and guide effective conservation solutions, I present 1) a synopsis of the literature regarding behavior, ecology, and evolution of movement in pond-breeding amphibians possessing biphasic life cycles to distinguish between migration and dispersal processes, 2) a working hypothesis of juvenile-based dispersal, and 3) a discussion of conservation issues that follow from distinguishing the spatial and temporal movements of amphibians at different scales. I define amphibian migration as intrapopulational, round-trip movements toward and away from aquatic breeding sites. Population-level management, in general, can be focused on spatial scales of <1.0 km with attention focused on adult population and juveniles that remain near the natal wetland. I define amphibian dispersal as interpopulational, unidirectional movements from natal sites to other breeding sites. Metapopulation- or landscape-level management can be focused on movements among populations at spatial scales >1.0–10.0 km and on importance of terrestrial connectivity. The ultimate goal of conservation for amphibians should be long-term regional persistence by addressing management issues at both local and metapopulation scales.

Raymond D. Semlitsch "Differentiating Migration and Dispersal Processes for Pond-Breeding Amphibians," Journal of Wildlife Management 72(1), 260-267, (1 January 2008).
Published: 1 January 2008

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top