BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 November 2008 Assessing Estimators of Snow Leopard Abundance
Kyle P. McCarthy, Todd K. Fuller, Ma Ming, Thomas M. McCarthy, Lisette Waits, Kubanych Jumabaev
Author Affiliations +
Abstract

The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture–recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June–December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture–recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates (photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture–recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation.

Kyle P. McCarthy, Todd K. Fuller, Ma Ming, Thomas M. McCarthy, Lisette Waits, and Kubanych Jumabaev "Assessing Estimators of Snow Leopard Abundance," Journal of Wildlife Management 72(8), 1826-1833, (1 November 2008). https://doi.org/10.2193/2008-040
Published: 1 November 2008
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
camera
capture–recapture
density
index
predator:prey ratios
techniques
Tien Shan
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top