Translator Disclaimer
1 April 2002 Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan
John C. Barry, Michèle E. Morgan, Lawrence J. Flynn, David Pilbeam, Anna K. Behrensmeyer, S. Mahmood Raza, Imran A. Khan, Catherine Badgley, Jason Hicks, Jay Kelley
Author Affiliations +

The Siwalik formations of northern Pakistan consist of deposits of ancient rivers that existed throughout the early Miocene through the late Pliocene. The formations are highly fossiliferous with a diverse array of terrestrial and freshwater vertebrates, which in combination with exceptional lateral exposure and good chronostratigraphic control allows a more detailed and temporally resolved study of the sediments and faunas than is typical in terrestrial deposits. Consequently the Siwaliks provide an opportunity to document temporal differences in species richness, turnover, and ecological structure in a terrestrial setting, and to investigate how such differences are related to changes in the fluvial system, vegetation, and climate. Here we focus on the interval between 10.7 and 5.7 Ma, a time of significant local tectonic and global climatic change. It is also the interval with the best temporal calibration of Siwalik faunas and most comprehensive data on species occurrences. A methodological focus of this paper is on controlling sampling biases that confound biological and ecological signals. Such biases include uneven sampling through time, differential preservation of larger animals and more durable skeletal elements, errors in age-dating imposed by uncertainties in correlation and paleomagnetic timescale calibrations, and uneven taxonomic treatment across groups. We attempt to control for them primarily by using a relative-abundance model to estimate limits for the first and last appearances from the occurrence data. This model also incorporates uncertainties in age estimates. Because of sampling limitations inherent in the terrestrial fossil record, our 100-Kyr temporal resolution may approach the finest possible level of resolution for studies of vertebrate faunal changes over periods of millions of years.

Approximately 40,000 specimens from surface and screenwash collections made at 555 localities form the basis of our study. Sixty percent of the localities have maximum and minimum age estimates differing by 100 Kyr or less, 82% by 200 Kyr or less. The fossils represent 115 mammalian species or lineages of ten orders: Insectivora, Scandentia, Primates, Tubulidentata, Proboscidea, Pholidota, Lagomorpha, Perissodactyla, Artiodactyla, and Rodentia. Important taxa omitted from this study include Carnivora, Elephantoidea, and Rhinocerotidae. Because different collecting methods were used for large and small species, they are treated separately in analyses. Small species include insectivores, tree shrews, rodents, lagomorphs, and small primates. They generally weigh less than 5 kg.

The sediments of the study interval were deposited by coexisting fluvial systems, with the larger emergent Nagri system being displaced between 10.1 and 9.0 Ma by an interfan Dhok Pathan system. In comparison to Nagri floodplains, Dhok Pathan floodplains were less well drained, with smaller rivers having more seasonally variable flow and more frequent avulsions. Paleosol sequences indicate reorganization of topography and drainage accompanying a transition to a more seasonal climate. A few paleosols may have formed under waterlogged, grassy woodlands, but most formed under drier conditions and more closed vegetation.

The oxygen isotopic record also indicates significant change in the patterns of precipitation beginning at 9.2 Ma, in what may have been a shift to a drier and more seasonal climate. The carbon isotope record demonstrates that after 8.1 Ma significant amounts of C4 grasses began to appear and that by 6.8 Ma floodplain habitats included extensive C4 grasslands. Plant communities with predominantly C3 plants were greatly diminished after 7.0 Ma, and those with predominantly C4 plants, which would have been open woodlands or grassy woodlands, appeared as early as 7.4 Ma.

Inferred first and last appe

John C. Barry, Michèle E. Morgan, Lawrence J. Flynn, David Pilbeam, Anna K. Behrensmeyer, S. Mahmood Raza, Imran A. Khan, Catherine Badgley, Jason Hicks, and Jay Kelley "Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan," Paleobiology 28(sp3), 1-71, (1 April 2002).[1:FAECIT]2.0.CO;2
Accepted: 1 October 2001; Published: 1 April 2002

Get copyright permission
Back to Top