Translator Disclaimer
17 January 2014 Diversification and diversity partitioning
Michael Hautmann
Author Affiliations +

Model calculations predict that pathways of alpha- and beta-diversity in diversifying ecosystems notably differ depending on the relative role of competition, predation, positive effects of species' interactions, and environmental parameters. Four scenarios are discussed, in which alpha- and beta-diversity are modeled as a function of increasing gamma-diversity. The graphic illustration of this approach is herein called α-β-γ plot, in which the x-axis indicates increasing diversification rather than absolute time. In purely environmentally controlled systems, beta-diversity maintains near-maximum values throughout the diversification interval, whereas mean alpha-diversity increases linearly, with a slope being reciprocal to beta-diversity. A second scenario is based on the assumption that increasing richness will have predominantly positive effects on the addition of further species; here, alpha- and beta-diversity increase simultaneously (though not necessarily at the same rates) and without reaching a predictable upper limit. In ecosystems that are characterized by low competition between species, mean alpha-diversity asymptotically approaches a saturation level, whereas the increase in beta-diversity accelerates until alpha-diversity stagnates, and then continues to rise linearly. If competition is high, addition of species first increases beta-diversity until no further habitat contraction is possible, followed by a period in which alpha-diversity increase through adaptive divergence becomes the principal drive of diversification. Because there is a continuous transition between the late stage of the low-competition model and the early stage of the high-competition scenario, both can be combined in a single model of diversity partitioning under the premise of a diversity-dependent increase of competition. This summary model predicts three phases of diversity accumulation: (1) a niche overlap phase, (2) a habitat contraction phase, and (3) a niche differentiation phase. The models herein discussed provide a potential tool to assess the question which factors primary controlled the diversification of life over geological times.

Michael Hautmann "Diversification and diversity partitioning," Paleobiology 40(2), 162-176, (17 January 2014).
Accepted: 1 October 2013; Published: 17 January 2014

Get copyright permission
Back to Top