Translator Disclaimer
9 February 2021 New Neogene Index Pollen and Spore Taxa from the Solimões Basin (Western Amazonia), Brazil
Author Affiliations +
Abstract

In western Amazonia, palynology has been the main source of chronological information for the Neogene Period. The Solimões Formation in northwestern Brazil has hundreds of meters of fine-grained rocks that have yielded rich pollen records informing on age and paleoenvironments. Here, we present new pollen data for two boreholes (1-AS-33-AM and 1-AS-37-AM) in the Solimões Basin and one outcrop (Patos) in the Acre Basin, and describe 36 new taxa (two pteridophyte spores and 34 angiosperm pollen) plus one emendation. Palynostratigraphic zonation schemes from Venezuela and Colombia were analyzed critically to provide relative ages for our sections. We found core 33AM to span pollen zones T14 (∼16–14.2Ma), T15 (14.2–12.7Ma) and T16 (12.7–7.1Ma) sensu Jaramillo et al. (2011), while core 37AM spans zones T15? and T16. We also report the widespread occurrence of Cyatheacidites annulatus in outcrops of the Solimões Formation, implying the existence of latest Miocene (∼7Ma) to Pliocene sedimentation and suggesting ages older than ∼7Ma for the uppermost sediments of our boreholes. Biostratigraphic relationships also indicate that Echitricolporites mcneillyi and Ladakhipollenites? caribbiensis cannot be used as Pliocene markers as previously assigned. The implications of these results for the palynostratigraphy and paleoenvironmental reconstructions of western Amazonia are discussed.

1. Introduction

The Solimões Formation is the most detailed geological record of the Miocene orogenic pulse of the Andes (Campbell et al. 2006) and the beginning of the Amazon River (Hoorn et al. 2010, 2017) in northwestern Brazil. It can reach up to 900 m deep in the Solimões Basin and 2200 m in the Acre Basin (Maia et al. 1977; Cunha 2007), and has recently become of increased importance in biostratigraphic studies. The Cenozoic and Cretaceous oil deposits in neighboring countries (Venezuela and Colombia) have led to detailed palynostratigraphic schemes for these periods (Germeraad et al. 1968; Lorente 1986; Muller et al. 1987; Jaramillo et al. 2011). However, the depositional context of the Solimões Basin is different and the use of these published palynostratigraphic frameworks, although useful, presents differences and discrepancies (Hoorn 1993; Latrubesse et al. 2010; Silva-Caminha et al. 2010; Silveira and Souza 2015; Leite et al. 2017; Kachniasz and Silva-Caminha 2017). The increasing number of palynological studies in wells and outcrops demands testing of the palynostratigraphic zonations for the Neogene deposits of the Solimões Formation. What is more, the paleobiodiversity information accumulated from this period has helped to elucidate the origins and processes linked to the rise of the Amazon biome (Hoorn et al. 2010; Salamanca et al. 2016; Espinosa et al. 2020); thus, a sound chronological framework is paramount to understanding diversification in the region. This study describes several new species found in cored sediments of the Solimões Formation, some of which can be the basis for establishing and refining biozones in the future. We also present new palynological data from Well 1AS-37-AM and the Patos outcrop in Acre (Latrubesse et al. 2010) and reanalyze and recalibrate the age of Well 1AS-33-AM (Leite et al. 2017).

1.1. Study area

The Solimões Basin, originally called the Upper Amazon Basin, was named by Caputo (1984). It extends for 400,000 km2 and is limited to the north by the Guiana shield, to the south by the Brazilian shield, to the east by the Purus arch and to the west by the Iquitos arch (Eiras et al. 1994) (Figure 1). The stratigraphy can be divided into two first-order sedimentary sequences, one Paleozoic, that represents the major part of the sedimentary package, and the other Mesozoic–Cenozoic (Eiras et al. 1994).

The Solimões Formation is composed by of claystones, siltstones and fine to medium clayey sandstones, with carbonate, gypsum and ferruginous concretions, and intercalations of lignites, and with invertebrate fossils, mainly mollusks (Maia et al. 1977). The age attributed to this unit was initially Pliocene (Eiras et al. 1994); however, later studies established a Miocene age (Hoorn 1993; Latrubesse et al. 2010; Silva-Caminha et al. 2010; Silveira and Souza 2015; Jaramillo et al. 2017; Kachniasz and Silva-Caminha 2017; Leite et al. 2017; Gomes et al. 2019; Leandro et al. 2019).

Figure 1.

Study area with localities mentioned in the text. Cores: 1-AS-33-AM and 1-AS-37-AM this study; 4aAM (Hoorn 1993); 19AM and 27AM (Silva-Caminha et al. 2010); 31AM and 34AM (Kachniasz and Silva-Caminha 2017); and 105AM (Jaramillo et al. 2017). Outcrops: Coari (Nogueira et al. 2013); Islândia (Unpublished, in prep.); Eirunepé (Gross et al. 2011); Talismã and Niterói (Bissaro-Júnior et al. 2019); and Patos (this study and Latrubesse et al. 2010).

img-z2-1_115.jpg

The Solimões Formation has lateral continuity in neighboring basins, under different names. In the Pastaza, Marañón and Madre de Dios basins in Peru, the Neogene pelitic deposits are called the Pebas beds, Ipururo and Madre de Dios formations, respectively. In Colombia, in the Amazon and Putumayo basins, they are known as the Amazon Tertiary and La Tagua beds (Hoorn 1993; Campbell et al. 2006). In the Acre Basin, the Solimões Formation has its greatest thickness, of up to ∼2200 m (Cunha 2007). The exposed Solimões beds in these regions are well known for a rich vertebrate fauna of reptiles and mammals (Cozzuol 2006; Latrubesse et al. 2010 and references therein).

2. Materials and methods

We studied two cores from the Solimões Formation (Figures 1, 2) that were drilled by the Brazilian Geological Survey (CPRM). Core 1-AS-33-AM (hereafter 33AM) was drilled along the Curuça River, Amazonas State [5°15′S, 71°33′W; elevation 100m above sea level (asl)] and reached a depth of 404.15m. Core 1-AS-37-AM (hereafter 37AM) was drilled along the Jandiatuba River, Amazonas State (3°30′S, 68°51′W; 60m asl) and reached a depth of 202.6m. Both cores comprise the Solimões Formation except the top ∼10 m that are recent fluvial sands.

We also re-studied the palynology of the Patos outcrop in the upper Acre River (10°55′S, 69°5′20″W) (Figure 2) that had been studied by Latrubesse et al. (2007, 2010). Patos is a ∼30 m high outcrop of the Solimões Formation in a river bank cut; the lower part bears a rich vertebrate fauna (Cozzuol 2006; Latrubesse et al. 2007, 2010; and references therein) that has been dated as late Miocene by correlation with the Huayquerian South American Land Mammal Age (SALMA). Most vertebrates come from the lower conglomerate and the pollen sample from the basal clay. More slides of this stratigraphic horizon were analyzed to increase pollen counts.

The original lithological descriptions for the cores are given in Maia et al. (1977) and for the Patos outcrop in Cozzuol (2006). We entered the lithological information in Excel® sheets and constructed new columns using the package SDAR (Ortiz and Jaramillo 2019) for the R programming environment (R Core Team 2018) (Figure 2).

Sediment samples were processed for pollen recovery using standard techniques that included elimination of carbonates with hydrochloric acid (HCl), elimination of silicates with hydrofluoric acid (HF), heavy liquid separation using zinc chloride (ZnCl2) at density 2 g/cm3 and organic dissolution with potassium hydroxide (KOH). Slides were mounted with Entellan and analyzed with optical microscopes. Optical photomicrographs were made with a Leica DM750 at 1000× magnification and confocal images with a confocal laser scanning microscope (Zeiss LSM 700 confocal system). Identification of pollen and spores followed South American Cenozoic palynological literature (Germeraad et al. 1968; Lorente 1986; Muller et al. 1987; Silva-Caminha et al. 2010; Jaramillo and Rueda 2020).

Figure 2.

Lithological columns of wells 1AS-33-AM and 1AS-37-AM and outcrop Patos, western Brazilian Amazon. Pollen zones (T14–T17) after Jaramillo et al. (2011). Notice the Patos outcrop is not in the same vertical scale as the borehole sections.

img-z3-1_115.jpg

Palynostratigraphic markers were used to correlate cores 33AM and 37AM with existing palynological zonations. Ages for the first appearance datum (FAD) from the Llanos and Llanos Foothills Zonation (Jaramillo et al. 2011) and Venezuelan basins (Germeraad et al. 1968; Lorente 1986) were correlated with the same events from pollen data from the cores.

3. Results

3.1. Cores

A total of 32 samples from core 33AM and 17 from core 37AM were counted and yielded 30,660 palynomorphs comprising 232 different taxa ( Supplementary online material), of which 36 are described as new species (two pteridophyte spores and 34 angiosperm pollen) plus one emendation. Among these, we found many key taxa used in the palynological zonations from Colombia (Jaramillo et al. 2011) and Venezuela (Germeraad et al. 1968; Lorente 1986) (Figure 3). When comparing the FAD events for these key taxa and their ages proposed in Colombia and Venezuela, a good correspondence of events can be observed (Figure 4). The bottom of core 33AM has many key taxa, but because of the edge effect (Foote 2000) those events are not reliable. However, the consistent appearance of Crassoretitriletes vanraadshooveni at 326.25 m (Figure 3) and the subsequent FADs of other important marker taxa such as Fenestrites spinosus (276.7 m), Cichoreacidites longispinosus (262 m), Ladakhipollenites? caribbiensis (239.9 m) and Paleosantalaceapites cingulatus (232.18 m) provide a consistent sequence of events. The FAD of C. vanraadshooveni marks the base of biozone T-15 (Jaramillo et al. 2011) at ∼14.2 Ma, and the FAD of F. spinosus marks the base of biozone T-16 (Jaramillo et al. 2011) at 12.7 Ma. The remaining aforementioned taxa also have their FADs in zone T-16 in the zonation of Jaramillo et al. (2011). The exception is G. magnaclavata, which appears at 16 Ma or before (e.g. Jaramillo et al. 2017 around 18 Ma). However, in the Venezuelan sections, Lorente (1986) marked the base of biozone G. magnaclavata as coinciding with nannofossil zone NN7 at ∼12 Ma (Backman et al. 2012) and planktonic foraminifera zone Globorotalia fohsi lobata (ca. 12.8 Ma after Boudagher-Fadel 2015). This age fits well with the sequence of events from the Solimões Formation cores, and therefore we adopt it as a first consistent occurrence (FCO) for G. magnaclavata.

The age–depth trend developed with all these events (Figure 4) points to the bottom of the core (399.1 m) being around 16 Ma, which coincides with the FAD of Multimarginites vanderhammeni that has an age of 15.95 according to Jaramillo et al. (2011). In the upper half of core 33AM we recorded Echitricolporites mcneillyi at 77.1 m. This pollen grain is used in the Colombian and Venezuelan zonation schemes to mark the onset of the Pliocene or Pleistocene, with ages from ∼1.5 Ma (Jaramillo et al. 2011) to ∼5.3 Ma or slightly older in the late Miocene (Germeraad et al. 1968; Lorente 1986; Muller et al. 1987), but without an age assigned. In the Solimões Formation, however, its first occurrence can be associated to the late Miocene with an age older than 7 Ma (see section 3.2). In sum, core 33AM ranges from early middle Miocene to late late Miocene (zones T-14 to T-16 sensu Jaramillo et al. 2011) (Figure 4).

Core 37AM has a similar set of FAD events starting around 200 m, indicating an age in zone T-16. There are no samples from the bottom ∼40 m. The upper half of core 37AM lacks key taxa, but a graphic correlation of cores 33AM and 37AM suggests almost all of core 37AM is correlated with the upper section (∼260 m) of core 33AM (Figure 5). This comparison showed a potential correlation point in the upper section established by Echidiporites barbeitoensis, which in Venezuela (Falcon Basin) can be associated with the base of the Asteraceae zone (sensu Lorente 1986; nannofossil zone NN9 at ∼10.5 Ma), in agreement with the upper sections belonging to zone T-16 (Figure 4). Furthermore, a congruent acme event of Retitrescolpites? irregularis is observed at the base of 37AM and mid-section in 33AM (Figure 3), also in agreement with the overall set of events. Finally, the topmost parts of both cores are correlated with Echiperiporites germeraadii sp. nov., although the validity of this event still needs to be investigated.

Figure 3.

Range charts of key taxa in wells 1AS-33-AM and 1AS-33-AM, western Brazilian Amazon. X-axis shows percentages of the pollen sums. Gray area is 50× exaggeration.

img-z4-1_115.jpg

Figure 4.

Comparison of events from core 1AS-33-AM against ages for key taxa suggested by Jaramillo et al. (2011) and Lorente (1986). The age–depth trend is based on first appearance datum (FAD) and first consistent occurrence (FCO) events (see text). Key taxa from the Patos outcrop are also shown (top right ranges). Gray area is the extent of the Huayquerian South American Land Mammal Age (SALMA) used to calibrate a maximum age for the FAD of E. mcneillyi. T14 to T17 are pollen zones from Jaramillo et al. (2011). Marine event is based on Medeiros et al. (2017, 2019) (see text). Biostratigraphic markers: 1. Echitricolporites mcneillyi: slide 33/77.10(6) EF W57/1; 2.Cyatheacidites annulatus: slide Patos 2 EF R19; 3. Paleosantalaceapites cingulatus: slide 33/232.18(1) EF G49/4;4. Fenestrites spinosus: slide 33/77.10(5) EF S33/1; 5. Cichoreacidites longispinosus: slide 33/137(1) EF Q53/4; 6. Grimsdalea magnaclavata: slide 33/239.90(2) EF H21/2-4; 7. Ladahkipollenites? caribbiensis: slide 33/238.33(3) EF J47/1.

img-z5-1_115.jpg

3.2. Patos

The Patos outcrop in the Acre region yielded 625 palynomorphs distributed in 62 taxa ( Supplementary online material). A novel co-occurrence was recorded between E. mcneillyi and Cyatheacidites annulatus. The spore C. annulatus marks the base of zone T-17 in Jaramillo et al. (2011), at 7.15 Ma. In Venezuela, Lorente (1986) also recorded C. annulatus in the late Miocene Fenestrites sub-zone. This occurrence constrains the Patos outcrop as not older than ∼7 Ma, which falls in the range of the Huayquerian SALMA biozone (9 to 6.5Ma) that was previously applied to the outcrop (Latrubesse et al. 2007, 2010).

A new outcrop locality (Islândia; 4°21′20′S, 70°2′18″W; Figure 1) near Tabatinga contains C. annulatus (unpublished results; in prep.). This outcrop is just ∼20 km distant from core 105AM, studied by Jaramillo et al. (2017) who also recorded E. mcneillyi in the core samples. This suggests a lower stratigraphic appearance of E. mcneillyi when compared to C. annulatus. Although we cannot yet establish a precise FAD age for E. mcneillyi for the Solimões Formation, it is logical to assume this age is older than the FAD of C. annulatus – 7.1 Ma (Jaramillo et al. 2011).

4. Discussion

4.1. Palynostratigraphy

The ages obtained for cores 33AM and 37AM are largely in agreement with existing biostratigraphic data for the Solimões Formation (Miocene–Pliocene). Some previously studied cores included older basal ages of early Miocene (Hoorn 1993; Jaramillo et al. 2017), while other cores are entirely middle to late Miocene (Silva-Caminha et al. 2010; Kachniasz and Silva-Caminha 2017). Hoorn (1993) applied the Venezuelan zonation of Lorente (1986) to the Solimões Formation and observed a similar sequence of events that allowed the use of key taxa for western Amazonia. Jaramillo et al. (2011) proposed an updated zonation for the Colombian Llanos that has also been successfully applied to western Amazonia (e.g. Boonstra et al. 2015; Jaramillo et al. 2017). However, it presents the FAD of G. magnaclavata as older than that of C. vanraadshooveni, marking the middle Miocene (∼16 Ma). This one key event is inverted in relation to previous zonation schemes where this event is younger (late middle Miocene ∼12–13 Ma). In all Solimões Formation cores studied so far (Hoorn 1993; Silva-Caminha et al. 2010; Kachniasz and Silva-Caminha 2017; Leite et al. 2017, present study), C. vanraadshooveni consistently appears first, agreeing with events in Venezuela (Germeraad et al. 1968; Lorente 1986). Furthermore, many key taxa, such as C. longispinosus, P. cingulatus, F. spinosus and L.? caribbiensis, appear synchronously with G. magnaclavata in the Solimões cores (Figures 3, 4), and their ages are latest middle Miocene to early late Miocene, ∼10 to ∼12 Ma (Jaramillo et al. 2011). We propose the use of the appearance of G. magnaclavata in core 33AM as a late middle Miocene event (∼12 Ma; see Results section 3.1); the discrepancy with older ages for this taxon could be due to environmental controls or incomplete sampling, which would indicate a difference between the FAD and FCO. When using the FCO of G. magnaclavata event, the discrepancy between the G. magnaclavata and C. vanraadshooveni sequences from the Llanos (Jaramillo et al. 2011) and Venezuelan basins (Germeraad et al. 1968; Lorente 1986) is reconciled.

Figure 5.

Graphic correlation of events from wells 1AS-33-AM and 1AS-37-AM, western Brazilian Amazon. Events are first appearance datum (FAD, circles) and last appearance datum (LAD, crosses); solid circles are events used for the line of correlation. T14 to T17 are pollen zones from Jaramillo et al. (2011).

img-z6-1_115.jpg

The upper parts of the cores are more difficult to correlate chronologically due to the lack of key taxa. However, the occurrence of E. mcneillyi suggests a latest Miocene age older than ∼7 Ma. Critical for the establishment of this age was the co-occurrence of E. mcneillyi with C. annulatus in the Patos outcrop in Acre and the fact that E. mcneillyi appears consistently in core samples below outcrops. Cyatheacidites annulatus has never been found in samples from cores, but is widespread in outcrops of the Solimões Basin in western and central Amazonia (this study; Gross et al. 2011; Nogueira et al. 2013), spanning over 1000 km. This means that the topmost Solimões Formation is in the T-17 pollen zone, latest Miocene to Pliocene (Jaramillo et al. 2011). Leite et al. (2017) established a Pliocene age for the upper half of 33AM due to the presence of L.? caribbiensis, which is correlated to the nannofossil biozones NN12–NN15 (5.6–3.7 Ma) in Lorente (1986). However, in the present study we repositioned this interval in zone T-16 (Jaramillo et al. 2011) as it is strati-graphically below the outcrops. This configuration also indicates that the use of L.? caribbiensis as a Pliocene marker (sensu Lorente 1986) is invalid for the Solimões Formation.

A recent finding of detrital zircon grains in two outcrops in Acre allowed a uranium–lead (U-Pb) chronology (Bissaro-Júnior et al. 2019). The Talismã and Niterói outcrops (Figure 1) had U-Pb zircon ages of 10.89 ± 0.13 Ma and 8.5 ± 0.5 Ma, respectively, indicating maximum deposition ages. Niterói is closer to Patos (Figure 1) and both crop out on the Acre River. Although a precise stratigraphic correlation cannot be established yet due to the lack of regional mapping and structural data, this zircon age (∼8 Ma) and the pollen zone of the Patos outcrop (∼7 Ma) allow us to compare them chronologically to Niteroi despite the distance. Both suggest a maximum age of latest Miocene for the exposed strata of the Solimões Formation in the region.

4.2. Paleoenvironments

Core 33AM was divided into two main paleoenvironments by Leite et al. (2017). The bottom part, until 239.9 m, is predominantly a fine-grained sequence (Figure 2) accumulated in low-energy environments dominated by Mauritiidites, which is fossil pollen of Mauritia L., a palm tree adapted to permanently waterlogged environments. This environment developed in the Pebas System (Wesselingh et al. 2002; Hoorn et al. 2010) of lakes and mega-lakes. The upper section of core 33AM and almost all of core 37AM are characterized by thicker packages of sand (Figure 2) that accumulated in a more fluvial context, therefore of higher energy when compared to the lower phase. The change is also evidenced in 33AM by a significant increase in pollen diversity and compositional change (Leite et al. 2017) as well as electric logging (Jorge et al. 2019). Provenance data from core 33AM (Horbe et al. 2019) also support a change from the lower section (∼400 to 287 m) to the upper section's heavy mineral and strontium/neodymium (Sr/Nd) isotopic record, which was associated to the uplift of the Eastern Peruvian Cordillera, between 25 and 10 Ma (Sundell et al. 2019), and with an orogenic peak around 12 Ma (Hoorn et al. 2010). These data corroborate the large-scale paleogeographic and drainage shifts that happened at the end of the Pebas phase (23 to 10 Ma) and beginning of the Acre Phase (10 to 7 Ma) (Hoorn et al. 2010).

Short marine inundations were recorded during the deposition of the Solimões Formation (Hoorn 1993; Boonstra et al. 2015; Jaramillo et al. 2017; Linhares et al. 2017; Sá et al. 2020). Two marine incursions in cores 105AM (Jaramillo et al. 2017) and 4aAM (Hoorn 1993) are dated as early and middle Miocene, respectively. Linhares et al. (2017) described three marine events (early, middle and late Miocene). Although we could not find palynomorphs such as dinoflagellate cysts and foraminifera linings, Medeiros et al. (2017, 2019) studied core 33AM and found a peak of foraminifera plus coral remains and bryozoans between 139.4 and 136.35m, comprising the late Miocene zone T-16 (Figure 4). There is also evidence of a late Miocene minor marine event by the presence of foraminifera in core 31AM (Linhares et al. 2011; Kachniasz and Silva-Caminha 2017) and ostracods in 8AM/7DAM (Linhares et al. 2019). Around 2% marine palynomorphs were reported in the Llanos Basin of Colombia around 7Ma (Jaramillo et al. 2017), which provides a possible explanation for the origin of the flooding. The observed marine influence could also be relictual and therefore may not necessarily invoke an active connection to the Llanos. More data are needed to better constrain this event and its origins.

5. Systematic palynology

In this section we describe and illustrate new species and provide new descriptions for two published species. Taxonomy follows the latest International Code of Nomenclature for algae, fungi and plants (Turland et al. 2018). For descriptions we adopted the terminology of Punt et al. (2007) with modifications from Jaramillo and Dilcher (2001), namely the use of MLI [monolete index: laesura length/spore length] and TLI [trilete index: radius length/(spore diameter/2)]. The number observed (no) and number measured (nm) are given; we aimed to measure five specimens when available. Measurements are presented as minimum–(mean)–maximum. All measurements are provided in a supplemental digital file. Types are located using the England Finder (EF) system. All stratigraphic ranges presented are related to the cores studied herein. Some botanical affinities are offered; they were established after comparison with neotropical palynology works and the reference pollen collection of the Universidade Federal de Mato Grosso. Slides are deposited at the Paleontology and Palynology Laboratory (PALMA) of the Universidade Federal de Mato Grosso, Cuiabá (Brazil), and at the Micropaleontology Laboratory (LABMICRO), Universidade de Brasília, Brasília (Brazil).1

SPORES
MONOLETES

POLYPODIISPORITES Potonié 1956 emend. Khan & Martin 1972

  • Type species. Polypodiisporites favus Potonié 1956.

  • Polypodiisporites minutiverrucatus sp. nov.
    Plate 1, figures 1–2

  • Holotype. 1AS-33-AM, 232.18m (1), EF: G46/3.

  • Etymology. After the small, verrucate ornamentation.

  • Diagnosis. Monolete, mid-sized, verrucae very short and closely spaced.

  • Description. Monolete spore, bilateral symmetry, reniform, monolete mark distinct, curvature absent, laesura short, 21 µm long, simple, sporoderm 1 µm thick, verrucate over the whole grain, verruca 1–2 µm wide, very short, 0.5 µm tall, closely spaced ca. 0.5 µm apart.

  • Dimensions. Polar view length: 48 µm, width 38 µm, MLI: 0.43 (holotype); nm = 1, no = 1.

  • Comparisons. Polypodiisporites usmensis (Van der Hammen 1956a) Khan & Martin 1972 is also gemmate. Polypodiisporites scabraproximatus Silva-Caminha et al. (2010) has proximal face scabrate. Polypodiisporites minutus (Couper 1960) Khan & Martin 1971 emend. Pocknall & Mildenhall 1984 has wider and more closely spaced verrucae. Polypodiisporites aff. specious Sah 1967 is laevigate on the proximal face and the verrucae are irregular in shape and size. Polypodiisporites pachyexinatus Jaramillo & Dilcher (2001) has thicker sporoderm.

  • Stratigraphic range. T16.

  • TRILETES

    PSILATRILETES Van der Hammen 1954 ex Potonié 1956

  • Type species. Psilatriletes detortus (Weyland & Krieger 1953) Potonié 1956.

  • Psilatriletes cozzuolii sp. nov.
    Plate 1, figures 3–5

  • Holotype. 1AS-33-AM, 399,10m (1), EF: P-36.

  • Paratype. 1AS-33-AM, 137m (1), EF: S-59/2-4.

  • Etymology. After the Argentinian paleontologist Mario Cozzuol. Diagnosis. Trilete, circular, large-sized, laevigate, trilete mark very small in relation to spore size.

  • Description. Trilete spore, radial symmetry, circular, trilete mark distinct, curvatura absent, radii very short, 20 µm long, marginate, margo 5 µm thick, thinning toward laesura ends, laevigate, sporoderm 4 µm thick.

  • Dimensions. Polar view length 60–(67)–74 µm, width 58–(63)–68 µm (holotype = 60 × 58 µm, paratype = 74 × 68 µm); TLI 0.12–(0.14)–0.16; nm = 2, no = 2.

  • Comparisons. Deltoidospora psilostoma Rouse 1959 is smaller and has a different shape. Deltoidospora australis (Couper 1953) Pocock 1970 has a triangular shape. Leiotriletes guaduensis (Van der Hammen 1954) Sole de Porta 1971 is smaller and has a fold on the laesura. Leiotriletes microadriennis Krutzsch 1959 is smaller (32–46) and the trilete mark is longer. Matonisporites silvai de Lima 1979 has a circular to triangular-obtuse-convex shape. Todisporites major Couper 1958 has longer marks.

  • Stratigraphic range. T14–T16.

  • POLLEN
    INAPERTURATE

    CROTONOIDAEPOLLENITES Rao & Ramanujam 1982

  • Type species. Crotonoidaepollenites euphorbioides Rao & Ramanujam 1982.

  • Plate 1.

    Figures 1, 2. Polypodiisporites minutiverrucatus sp. nov., holotype, 1AS-33-AM, 232.18 m (1), EF: G46/3. Figures 3, 4. Psilatriletes cozzuolii sp. nov., holotype, 1AS-33-AM, 399,10 m (1), EF: P-36. Figure 5. Psilatriletes cozzuolii sp. nov., paratype, 1AS-33-AM, 137 m (1), EF: S-59/2-4. Figures 6, 7. Crotonoidaepollenites reticulatus (Silva-Caminha et al. 2010) emend. holotype, AM19-1, EF: J33/3. Figures 8, 9. Crotonoidaepollenites reticulatus (Silva-Caminha et al. 2010) emend. 1AS-33-AM, 232.18 m (2), EF: G41/1-2. Figures 10, 11. Crotonoidaepollenites echinatus sp. nov., holotype, 1AS-33-AM, 154.70 m (3), EF: O24/4. Figures 12, 13, 14. Crotonoidaepollenites echinatus sp. nov., paratype, 1AS-33-AM, 193 m (5), EF: J37. Figures 15, 16. Inaperturopollenites microechinatus sp. nov., holotype, 1AS-37-AM, 114 m (3), EF: E56/4. Figures 17, 18. Retipollenites solimoensis sp. nov., holotype, 1AS-37-AM, 123 m (1), EF: D27/4. Figures 19, 20. Retipollenites solimoensis sp. nov., paratype, 1AS-33-AM, 304.45 m (1), EF: H53-J. Scale bars: 20 µm, unless otherwise noted.

    img-z8-1_115.jpg

    Crotonoidaepollenites reticulatus Silva-Caminha et al. 2010
    Plate 1, figures 6–9

  • Specimen. 1AS-33-AM, 232.18 m (2), EF: G41/1-2.

  • Description. Monad, radial symmetry, isopolar, circular; inaperturate; intectate, nexine 0.5–1 µm thick; sculpture clavate, clavae 3 µm tall, base 0.5 µm wide, clavae tips 1–1.5 µm wide; clavae disposed in crottonoid pattern.

  • Dimensions. Diameter 30–(40)–45 µm wide × 28–(37.2)–42 µm long (holotype = 45 × 42 µm, paratype = 40 × 38 µm); nm = 5, no = 79.

  • Remarks. The nexine was described originally as reticulate; however, some specimens do not have reticulum or it is not distinct.

  • Stratigraphic range. T14–T16.

  • Crotonoidaepollenites echinatus sp. nov.
    Plate 1, figures 10–14

  • Holotype. 1AS-33-AM, 154.70m (3), EF: O24/4.

  • Paratype. 1AS-33-AM, 193m (5), EF: J37.

  • Etymology. After the clavate/echinate ornamentation.

  • Diagnosis. Monad, spheroidal, mid-sized, inaperturate, intectate, clavate with croton pattern ornamentation, clavae with acute top forming echinae.

  • Description. Monad pollen grain; spheroidal; inaperturate; intectate, nexine 1µm; sculpture clavate/echinate, clavae arranged in crotonoid pattern; clavae 2µm tall, base 0.8µm wide, middle part 1.2µm wide, top of the clavae (capita) ending in an acute point, thus resembling spines.

  • Dimensions. Diameter 34–(36)–40 µm long × 25–(30.4)–35 µm wide (holotype = 39 × 35 µm, paratype = 31 × 27 µm); nm = 5, no = 7.

  • Comparisons. Crotonoidaepollenites reticulatus Silva-Caminha et al. (2010) is larger and has the top of clavae rounded or flat. Clavainaperturites clavatus Van der Hammen & Wymstra 1964 has smaller clavae (1 µm) with a different shape. Clavainaperturites microclavatus Hoorn 1994 is smaller and the tectum is perforate. Crotonoidaepollenites euphorbioides Rao & Ramanujam 1982 is tectate.

  • Stratigraphic range. T16.

  • INAPERTUROPOLLENITES (Pflug) Potonié 1958

  • Type species. Inaperturopollenites dubius (Potonié & Venitz) Thomson & Pflug 1953.

  • Inaperturopollenites microechinatus sp. nov.
    Plate 1, figures 15–16

  • Holotype. 1AS-37-AM, 114 m (3), EF: E56/4.

  • Etymology. After its delicate echinate ornamentation.

  • Diagnosis. Monad, subspheroidal, large-sized, inaperturate, tectate, echinate, echinae size <1 µm.

  • Description. Monad; subspheroidal; inaperturate; tectate, exine 1.7 µm, nexine 0.5 µm thick, columellae 0.8 µm tall, tectum 0.4 µm thick; sculpture echinate, echinae 0.5–1.0 µm tall, 0.5–1.0 µm wide, 2 µm apart, conical, acute, spines evenly distributed over entire grain, shadow of the columellae visible underneath the tectum, which gives the impression of a microreticulate pattern.

  • Dimensions. Diameter 53 µm long × 38 µm wide; nm = 1, no = 2.

  • Comparisons. Cristaeturites cristatus (van Hoeken-Klinkenberg 1964) Schrank 1994 has larger echinae. Droseridites senonicus Jardine & Magloire 1965 is smaller (12–24 µm) and usually found in tetrads.

  • Stratigraphic range. T16.

  • RETIPOLLENITES Gonzalez-Guzman 1967

  • Type species. Retipollenites confusus González-Guzmán 1967.

  • Retipollenites solimoensis sp. nov.
    Plate 1, figures 17–20

  • Holotype. 1AS-37-AM, 123 m (1), EF: D27/4.

  • Paratype. 1AS-33-AM, 304.45m (1), EF: H53-J.

  • Etymology. After the Solimões River.

  • Diagnosis. Monad, spheroidal, mid-sized, inaperturate, semitectate, reticulate, homobrochate.

  • Description. Monad; spheroidal; inaperturate; semitectate, exine 1 µm; tectum 0.5 µm; columellae 0.2 µm; nexine 0.3 µm; sculpture reticulate, homobrochate; lumina polygonal to rounded; lumina 0.5 µm wide; muri 1 µm, simplicolumellate; occasionally colpi-like ruptures of the exine appear, giving the grain a colpate appearance.

  • Dimensions. Diameter 33–(37)–40 µm long × 29–(33)–35 µm wide (holotype = 39 × 35 µm, paratype = 33 × 38 µm); nm = 5, no = 124.

  • Comparisons. Inaperturopollenites cursis Sarmiento 1992 is smaller and oblate. Inaperturopollenites curvimuratus Regali et al. 1974 has curvimurate reticulum.

  • Stratigraphic range. T14–T16.

  • MONOPORATE

    MONOPOROPOLLENITES (Meyer 1956) Potonié 1960

  • Type species. Monoporopollenites gramineoides Meyer 1956.

  • Monoporopollenites scabratus sp. nov.
    Plate 2, figures 1–4

  • Holotype. 1AS-33-AM, 203.15m (2), EF: C30.

  • Paratype. 1AS-33-AM, 203.15m (2), EF: Q44/4.

  • Etymology. After the scabrate ornamentation.

  • Diagnosis. Monad, circular, mid-sized, monoporate, tectate, scabrate and micro-foveolate.

  • Description. Monad pollen grain, amb circular; monoporate; tectate, exine 1.2 µm thick, nexine 0.7 µm thick, columellae indistinct, tectum 0.5 µm thick, sculpture scabrate and micro-foveolate; pore circular, 4 µm wide, annulate, annulus 2 µm thick.

  • Dimensions. Diameter 20–(25)–30 µm long × 18–(23)–27 µm wide (holotype = 27 × 22 µm, paratype = 24 × 22 µm); nm = 5, no = 71.

  • Comparisons. Monoporopollenites annulatus (Van der Hammen) Jaramillo & Dilcher (2001) is psilate and exine is thinner. Monoporites parcus Sarmiento 1992 is psilate and has a simple pore.

  • Botanical affinity. Poaceae.

  • Stratigraphic range. T16.

  • TRIPORATE

    ECHITRIPORITES (Van der Hammen 1956) Van Hoeken-Klinkenberg 1964

  • Type species. Echitriporites trianguliformis Van Hoeken-Klinkenberg 1964.

  • Echitriporites jolyi sp. nov.
    Plate 2, figures 5–8

  • Holotype. 1AS-33-AM, 232.18m (1), EF: P55/3.

  • Paratype. 1AS-33-AM, 232.18m (1), EF: H41/3-J.

  • Etymology. After the Brazilian botanist Aylthon Brandão Joly.

  • Diagnosis. Monad, spheroidal, large-sized, triporate, intectate, echinate.

  • Description. Monad; spheroidal; triporate; intectate; nexine 0.7; sculpture echinate; tips of echinae acute; echinae 2–3 µm tall, 1–1.5 µm wide at base; evenly distributed 5 µm apart; interspine surface psilate; pore 5 µm wide, circular, faintly annulate; annulus 2 µm wide.

  • Dimensions. Equatorial view diameter 34–(45.6)–52 µm long × 32–(34.6)–37 µm wide (holotype = 51 × 37 µm, paratype = 35 × 52 µm (incomplete)); nm = 3, no = 3.

  • Comparisons. Echitriporites nuriae Dueñas 1980 has longer echinae (6µm). Echitriporites trianguliformis var. orbicularis Jaramillo & Dilcher (2001) has smaller size and spines. Bacutriporites echinatus Jaramillo & Dilcher (2001) has echinate-baculate ornamentation.

  • Botanical affinity. Cayaponia (Cucurbitaceae).

  • Stratigraphic range. T16.

  • RETITRIPORITES Ramanujam 1966

  • Type species. Retitriporites curvimurati Ramanujam 1966.

  • Retitriporites crassoreticulatus sp. nov.
    Plate 2, figures 9–13

  • Holotype. 1AS-33-AM, 239.90m (2), EF: W47/3.

  • Paratype. 1AS-33-AM, 239.90m (2), EF: X33/1.

  • Etymology. After the coarse reticulate ornamentation.

  • Diagnosis. Monad, oblate, subtriangulate, mid-sized, triporate, semitectate, reticulate, homobrochate.

  • Description. Monad; oblate; amb subtriangular; triporate; semitectate, nexine 0.8 µm, simplicolumellate; columella 0.8 µm tall, 1 µm wide; tectum 0.8 µm; sculpture reticulate; homobrochate; lumina irregular in shape, variable in size 2–7 µm, circular; muri 1.5 µm wide; pore 3–5 µm wide, circular, costate, costae 3 µm wide, 3 µm thick.

  • Dimensions. Polar view diameter 31–(33)–35 µm long × 23–(27)–31 µm wide (holotype = 31 × 31 µm, paratype= 23 × 35 µm); nm = 2, no = 2.

  • Comparisons. Retitriporites sp. 1 Silva-Caminha et al. (2010) is curvimurate and has smaller pores. Retitriporites acostai Duenas 1986 is heterobrochate with lumina increasing toward equator. Rugulatitriporites vestibulipori Muller 1968 is finely reticulate. Retitriporites variabilis Muller 1968 has wider lumina. Retitriporites boltenhagenii Salard-Cheboldaeff 1978 is smaller and has a thick annulus (3.5 µm).

  • Stratigraphic range. T16.

  • PERIPORATE

    ECHIPERIPORITES (Van der Hammen & Wymstra 1964)
    Anzótegui 1990

  • Type species. Echiperiporites akanthos Van der Hammen & Wijmstra 1964.

  • Echiperiporites germeraadii sp. nov.
    Plate 2, figures 14–17
    Echiperiporites estelae Silva-Caminha et al. (2010), p. 71, pl. 4, figs 22–24.

  • Holotype. 1AS-33-AM, 77.10m (4), EF: N27/1.

  • Paratype. 1AS-33-AM, 193.50m (5), EF: J29.

  • Etymology. After the Dutch palynologist Johan Henri Germeraad.

  • Diagnosis. Monad, spheroidal, large-sized, periporate, 15 pores, annulate, tectate, echinate, size of echinae 2.5 µm.

  • Description. Monad pollen grain, spheroidal; periporate; 15 pores; tectate, nexine 0.8 µm, columellae 0.2 µm tall all over the grain; tectum 0.2 µm, smooth, tips of columellae distinct; sculpture echinate; echinae conical, tips acute; echinae 2.5 µm tall, 2 µm wide at base, evenly distributed 3–5 µm apart; pore 3–4 µm wide, circular, annulate, annuli 2 µm wide, 2 µm thick.

  • Dimensions. Diameter 44–(48.4)–54 µm long × 36–(44)–51 µm wide (holotype = 54 × 51 µm, paratype = 44 × 36 µm); nm = 5, no = 30.

  • Comparisons. Echiperiporites estelae Germeraad et al. (1968) (Plate 3, figures 5–6) has 20 or more pores, echinae 6–9 µm tall, echinae tips rounded, tectum thicker underneath spines. Echiperiporites jutaiensis Silva-Caminha et al. (2010) (Plate 3, figures 7–8) is smaller (28–30 µm), and has 7–11 pores and a thicker nexine. Echiperiporites lophatus (Plate 3, figures 9–13) Silva-Caminha et al. (2010) has lophae. Echiperiporites jaramilloi sp. nov. and E. titanicus sp. nov. are much larger in size, have larger echinae and have more pores (>20).

  • Stratigraphic range. T16.

  • Echiperiporites lophatus (Silva Caminha, Jaramillo, & Absy 2010) emend.
    Plate 3, figures 1–5

  • Paratype. 1AS-33-AM, 77.10m (4), EF: X35 2.

  • Original description. ‘Monad, radial, isopolar, circular; pantoporate, endopores simple, 30 pores, pores 3µm wide, 3µm long, circular, evenly distributed over the entire grain, resembling a lophate ornamentation; tectate, exine 2.7µm thick, nexine very thick, 2µm thick, columellae 0.5µm thick, distinct, 0.5µm wide, 0.5 µm apart, columellae increase at the base of spines to 5µm thick, tectum 0.2µm thick; scupture echinate, echinae very long, 8–10µm long, 3µm wide, 5µm apart, conical, echinae are restricted to the tectum surrounding the pores'.

  • New description. Monad, spheroidal; pantoporate, 30–50 pores, endopore simple, pores 2–3 µm wide, circular, evenly distributed over the entire grain; tectate, nexine 1 µm, columellae 4 µm tall, ≤0.5 µm wide; tectum 0.5 µm, smooth, tips of columellae distinct; sculpture echinate-lophate; ridges between echinae forming lophae; echinae conical, tips acute; echinae 5 µm tall, 4 µm wide at base, evenly distributed, 2–5 µm apart; lacunae of the lophae 5–7 wide, circular, 6–7 echinae per lophae.

  • Dimensions. Diameter 35–(43.6)–55 µm long × 30–(38.2)–42 µm wide (holotype = 48 × 42 µm, paratype = 55 × 41 µm); nm = 5, no = 100.

  • Remarks. In the holotype most of the lophae had lost the ridges between the echinae, except in a few places (Plate 3, figures 10–11). Some degraded grains lose all ridges and the echinae appear isolated (Plate 3, figures 12–13). We analyzed the holotype and established a paratype, increasing the pore number encompassed in this taxon (from 30 to 50).

  • Stratigraphic range. T15–T16.

  • Plate 2.

    Figures 1, 2. Monoporopollenites scabratus sp. nov, holotype, 1AS-33-AM, 203.15 m (2), EF:C30. Figures 3, 4. Monoporopollenites scabratus sp. nov, paratype, 1AS-33-AM, 203.15 m (2), EF: Q44/4. Figures 5, 6. Echitriporites jolyi sp. nov., holotype, 1AS-33-AM, 232.18 m (1), EF: P55/3. Figures 7, 8. Echitriporites jolyi sp. nov., paratype, 1AS-33-AM, 232.18 m (1), EF: H41/3-J. Figures 9, 10, 11. Retitriporites crassoreticulatus sp. nov., holotype, 1AS-33-AM, 239.90 m (2), EF: W47/3. Figures 12, 13. Retitriporites crassoreticulatus sp. nov., paratype, 1AS-33-AM, 239.90 m (2), EF: X33/1. Figures 14, 15. Echiperiporites germeraadii sp. nov., holotype, 1AS-33-AM, 77.10 m (4), EF: N27/1. Figures 16, 17. Echiperiporites germeraadii sp. nov., paratype, 1AS-33-AM, 193.50 m (5), EF: J29. Figures 18, 19. Echiperiporites estelae Germeraad et al. 1968, 1AS-33-AM, 154.70 m (1), EF: L55/3. Figures 20, 21. Echiperiporites jutaiensis Silva-Caminha et al. 2010, holotype, 1AS-27-AM, 27-24, EF: E57 2. Scale bars: 20 µm, unless otherwise noted.

    img-z11-1_115.jpg

    Echiperiporites jaramilloi sp. nov.
    Plate 3, figures 6–8

  • Holotype. 1AS-33-AM, 212.65m (3), EF: P40/1-2.

  • Paratype. 1AS-33-AM, 238.33m (3), EF: M38-M39.

  • Etymology. After the Colombian palynologist Carlos Jaramillo.

  • Diagnosis. Monad, spheroidal, large-sized, periporate, 23–25 pores, annulate, tectate, echinate, size of echinae 15–20 µm.

  • Description. Monad, spheroidal; periporate; 23–25 pores; tectate, nexine 3µm, columellae 0.5–1µm tall between spines and 2–3µm underneath spines, ≤ 0.5µm wide; tectum 0.5µm, smooth, tips of columellae distinct; sculpture echinate; echinae conical, tips acute; echinae 15–20µm tall, 8µm wide at base, evenly distributed 10µm apart; pores 5–7µm wide, circular, annulate, annuli 2–4µm wide, 5–6µm thick.

  • Dimensions. Diameter 85–(103)–122 µm long × 85–(96.6)–112 µm wide (holotype = 122 × 112 µm, paratype = 108 × 98 µm); nm = 5, no = 14.

  • Comparisons. All other Echiperiporites species are smaller. Echiperiporites estelae is smaller and has echinae of 6–9 µm. Echiperiporites titanicus sp. nov. has more pores (>70). Remarks. This species is similar to Echiperiporites spp. described in Hoorn (1994, p. 227, pl. 1, fig. 12).

  • Botanical affinity. Hibiscus (Malvaceae).

  • Stratigraphic range. T14–T16.

  • Echiperiporites titanicus sp. nov.
    Plate 3, figures 9–12

  • Holotype. 1AS-33-AM, 399.10m (1), EF: G46/2.

  • Paratype. 1AS-37-AM, 84.85m (1), EF: T48/3-4.

  • Etymology. After the great thickness of the nexine.

  • Diagnosis. Monad, spheroidal, large sized, periporate, >70 pores, simple, tectate, echinate, size of echinae 12 µm.

  • Description. Monad, spheroidal; periporate; more than 70 pores; tectate, nexine 6µm, columellae 1µm tall; tectum <0.5µm, smooth, tips of columellae distinct; sculpture echinate; echinae conical, tips acute; echinae 12µm tall, 5–6µm wide at base, evenly distributed 13µm apart; pores circular, simple, 2µm wide at ectopore and canal pore widens to 6µm, pores 15µm apart.

  • Dimensions. Diameter 78–(84)–90 µm long × 90 µm wide (holotype = 90 × 90 µm, paratype = 78 µm wide (incomplete)); nm = 2, no = 2.

  • Comparisons. Echiperiporites estelae has thinner exine and smaller spines (6–9µm). Echiperiporites lophatus Silva-Caminha et al. (2010) has lophae and is smaller. Echiperiporites akanthos Van der Hammen & Wymstra 1964 is much smaller in size, with smaller echinae. Echiperiporites jaramilloi sp. nov. is larger and has fewer pores (23–25).

  • Botanical affinity. Malachra (Malvaceae).

  • Stratigraphic range. T14.

  • PSILAPERIPORITES Regali et al. 1974

  • Type species. Psilaperiporites robustus Regali et al. 1974.

  • Psilaperiporites delicatus sp. nov.
    Plate 3, figures 13–16

  • Holotype. 1AS-37-AM, 94.70m (1), EF: G 30/4.

  • Paratype. 1AS-33-AM, 212.65m (3), EF: T25/2.

  • Etymology. After the delicate appearance of the thin exine.

  • Diagnosis. Monad, spheroidal, large-sized, periporate, 6 pores, simple, atectate, psilate.

  • Description. Monad, amb spheroidal; periporate; 6 pores; atectate, exine 1–1.2 µm; sculpture psilate; pore 6–9 µm wide, simple, circular.

  • Dimensions. Diameter 24–(27.4)–32 µm long × 22–(25.2)–30 µm wide (holotype = 25 × 23 µm, paratype = 28 × 26 µm); nm = 5, no = 71.

  • Comparisons. Psilaperiporites minimus Regali et al. 1974 is tectate and has more pores (40–50). Psilaperiporites robustus Regali et al. 1974 is larger (45–63 µm). Psilaperiporites suarezi Vajda-Santibanez 1999 has more pores (16–34). Parsonsidites? sp. 1 Jaramillo & Dilcher (2001) is psilate-micropitted and pores have an annulus.

  • Stratigraphic range. T15–T16.

  • Psilaperiporites lunaris sp. nov.
    Plate 3, figures 17–18

  • Holotype. 1AS-37-AM, 114 m (1), EF: K34.

  • Etymology. After its resemblance to the craters of the moon.

  • Diagnosis. Monad, spheroidal, small-sized, pantoporate, 6 pores, annulate, atectate, psilate.

  • Description. Monad, spheroidal; pantoporate; 6 pores; atectate, exine 1µm, smooth; sculpture psilate; pores circular, annulate, 1µm wide, annuli 1.5µm thick, 1µm wide, pores 5µm apart.

  • Dimensions. Diameter 17 µm long × 18 µm wide (holotype); nm = 1, no = 1.

  • Comparisons. Psilaperiporites sp. 1 Silva-Caminha et al. (2010) has 18 pores arranged in pairs. Psilaperiporites minimus Regali et al. 1974 is tectate, with more pores (40–50). Psilaperiporites robustus Regali et al. 1974 is larger (45–63 µm). Multiporopollenites pauciporatus Jaramillo & Dilcher (2001) is tectate and micro-foveolate.

  • Stratigraphic range. T16.

  • Plate 3.

    Figure 1. Echiperiporites lophatus (Silva Caminha, Jaramillo, & Absy 2010) emend., holotype, 1AS-27-AM, 27-7, EF: S24. Figures 2, 3. Echiperiporites lophatus (Silva Caminha, Jaramillo, & Absy 2010) emend., paratype, 1AS-33-AM, 154.70 m (3), EF: M54/1. Figures 4, 5. Echiperiporites lophatus (Silva-Caminha, Jaramillo and Absy 2010) emend., 1AS-33-AM, 137 m (1), EF T58/4. Figures 6, 7. Echiperiporites jaramilloi sp. nov., holotype, 1AS-33-AM, 212.65 m (3), EF: P40/1-2. Figure 8. Echiperiporites jaramilloi sp. nov., paratype, 1AS-33-AM, 238.33 m (3), EF: M38-M39. Figures 9, 10, 11. Echiperiporites titanicus sp. nov., holotype, 1AS-33-AM, 399.10 m (1), EF: G46/2. Figure 12. Echiperiporites titanicus sp. nov., paratype, 1AS-37-AM, 84.85 m (1), EF: T48/3-4. Figures 13, 14. Psilaperiporites delicatus sp. nov., holotype, 1AS-37-AM, 94.70 m (1), EF: G 30/4. Figures 15, 16. Psilaperiporites delicatus sp. nov., paratype, 1AS-33-AM, 212.65 m (3), EF: T25/2. Figures 17, 18. Psilaperiporites lunaris sp. nov., holotype, 1AS-37-AM, 114 m (1), EF: K34. Figures 19, 20. Echistephanoporites annulatus sp. nov., holotype, 1AS-37-AM, 114 m (1), EF: G41/4. Figures 21, 22, 23. Echistephanoporites annulatus sp. nov., paratype, 1AS-37-AM, 114 m (1), EF: U33. Scale bars: 20 µm, unless otherwise noted.

    img-z13-1_115.jpg

    STEPHANOPORATE

    ECHISTEPHANOPORITES Leidelmeyer 1966

  • Type species. Echistephanoporites alfonsi Leidelmeyer 1966.

  • Echistephanoporites annulatus sp. nov.
    Plate 3, figures 19–23

  • Holotype. 1AS-37-AM, 114 m (1), EF: G41/4.

  • Paratype. 1AS-37-AM, 114m (1), EF: U33.

  • Etymology. After the annulate pores.

  • Diagnosis. Monad, spheroidal, small-sized, stephanoporate, 5–6 pores, annulate, tectate, echinate, echinae 1 µm.

  • Description. Monad, spheroidal; stephanoporate; 5–6 pores; tectate, columellae indistinct, exine 1 µm, smooth; sculpture echinate; echinae conical, tips acute; echinae 1.5 µm tall, 2 µm wide at base, closely distributed; pores circular, annulate, 1 µm wide, annuli 1 wide, pores 4 µm apart.

  • Dimensions. Diameter 17–(17.8)–19 µm long × 17–(17.8)–19 µm wide (holotype = 18 × 18 µm, paratype = 17 × 17 µm); nm = 5, no = 8.

  • Comparisons. Echistephanoporites alfonsi Leidelmeyer 1966 is tectate, has 4 pores and has echinae 1 µm thick. Echiperiporites akanthos Van der Hammen & Wymstra 1964 is pantoporate and has echinae of a different size.

  • Stratigraphic range. T16.

  • TRICOLPATE

    ECHITRICOLPITES Regali, Uesugui & Santos 1974

  • Type species. Echitricolpites communis Regali, Uesugui & Santos 1974.

  • Echitricolpites cruziae sp. nov.
    Plate 4, figures 1–4

  • Holotype. 1AS-33-AM, 155 m (6), EF: F49/4.

  • Paratype. 1AS-33-AM, 155m (6), EF: J52/3-K.

  • Etymology. After the Brazilian palynologist Norma Cruz.

  • Diagnosis. Monad, spheroidal, mid-sized, tricolpate, intectate, echinate, echinae <1µm.

  • Description. Monad; spheroidal; echinate; tricolpate; intectate, nexine 1.2 µm; sculpture echinate; echinae 0.51 µm; colpi 8–11 µm long, 2 µm wide, simple; occasionally the grain seems to be inaperturate.

  • Dimensions. Polar view diameter 30–(30.5)–31.5 µm long × 27–(29.2)–30 µm wide (holotype = 31.5 × 30 µm, paratype = 30 × 39 µm); nm = 5, no = 61.

  • Comparisons. Echitricolpites communis Regali et al. 1974 has thin echinae and distinct columellae. Echitricolpites polaris Regali et al. 1974 is larger (45–50 µm), colporate and prolate. Malvacipolloides romeroe sp. nov. is tectate and tricolporate.

  • Stratigraphic range. T16.

  • Botanical affinity. Aegiphila (Lamiaceae).

  • LADAKHIPOLLENITES Mathur & Jain 1980

  • Type species. Ladakhipollenites levis (Sah & Dutta 1966) Mathur & Jain

  • 1980 Ladakhipollenites carmoi sp. nov.
    Plate 4, figures 5–8

  • Holotype. 1AS-37-AM, 84.85m (1), EF: J27/2.

  • Paratype. 1AS-37-AM, 84.85m (1), EF: H26/2.

  • Etymology. After the Brazilian ostracodologist Dermeval A. do Carmo.

  • Diagnosis. Monad, prolate, large-sized, tricolpate, tectate, psilate-foveolate.

  • Description. Monad, prolate; tricolpate; tectate, exine 2 µm, nexine 0.5 µm, columellae 0.5 µm tall, 0.3 µm wide, 0.5 µm apart, tectum 1 µm; sculpture psilate to slightly foveolate; colpi simple, invaginating, 50 µm long.

  • Dimensions. Polar diameter 54–(56.2)–60 µm, equatorial diameter 26–(28.6)–31 µm (holotype = 55 × 26 µm, paratype = 55 × 26 µm); nm = 5, no = 16.

  • Comparisons. Ladakhipollenites? caribbiensis (Muller et al. 1987) Silva Caminha et al. 2010 is tricolporate. Ladakhipollenites simplex (Gonzalez 1967) Jaramillo & Dilcher (2001) has marginate colpi and thinner tectum. Psilatricolpites clarissimus (van der Hammen 1954) van der Hammen & Wymstra 1964 is smaller in equatorial length (30µm) and psilate.

  • Stratigraphic range. T16.

  • RETIBREVITRICOLPITES Van Hoeken-Klinkenberg 1966

  • Type species. Retibrevitricolpites triangulatus van Hoeken-Klinkenberg 1966.

  • Retibrevitricolpites microreticulatus sp. nov.
    Plate 4, figures 9–12

  • Holotype. 1AS-33-AM, 276 (3), EF: P37-Q.

  • Paratype. 1AS-33-AM, 190 (4), EF: G44.

  • Etymology. After the microreticulate ornamentation.

  • Diagnosis. Monad, spheroidal, mid-sized, tricolpate, semitectate, microreticulate.

  • Description. Monad; spheroidal; tricolpate; semitectate, exine 3 µm, nexine 1.2 µm, columellae clava-like, 0.8 µm high, capita merged forming tectum, tectum 1 µm; sculpture microreticulate, lumina 0.8 µm, muri 0.5 µm; colpi simple, pointed tips, 12 µm long.

  • Dimensions. Equatorial view diameter 22–(26)–27 µm, polar diameter 20–(26)–30 µm (holotype = 30 × 27 µm); polar view diameter 29 µm long, 28 µm wide (paratype); nm = 5, no = 11.

  • Comparisons. Clavainaperturites microclavatus Hoorn 1994 is inaperturate and micropitted. Retitricolporites crucipori Muller 1968 has wider lumina (>2 µm). Retitricolporites constrictus Gonzalez 1967 has colpi costate. Retitricolporites gemmatus Herngreen 1975 has exine thinning toward colpi. Tricolpites microreticulatus Belsky et al. 1965 has a triangular-obtuse-convex shape and longer colpi.

  • Stratigraphic range. T16.

  • ROUSEA Srivastava 1969

  • Type species. Rousea subtilis Srivastava 1969.

  • Rousea cavitata sp. nov.
    Plate 4, figures 13–14

  • Holotype. 1AS-33-AM, 232 (1), EF: R37/3.

  • Etymology. After the internal cavities of the muri.

  • Diagnosis. Monad, subtriangular, mid-sized, tricolpate, semitectate, reticulate, heterobrochate.

  • Description. Monad, amb subtriangular; tricolpate; semitectate, exine 6µm, nexine 1.5µm, simplicolumellate, columellae hollow, 1.5µm tall, outline round to elongate, 1–3µm wide, tectum 3µm; sculpture reticulate, heterobrochate, lumina 2–7µm, decreasing toward apocolpia, muri 2–3µm, muri with internal cavities; colpi simple, rounded tips, 40µm long.

  • Dimensions. Polar view diameter 55 µm long, 54 µm wide (holotype); nm = 1, no = 1.

  • Comparisons. Rousea geranioides (Couper 1960) Srivastava 1975 and R. delicipollis Srivastava 1975 are thinner and have smaller lumina and muri. Rousea georgensis (Brenner) Dettmann 1973 is smaller.

  • Stratigraphic range. T16.

  • STEPHANOCOLPATE

    RETISTEPHANOCOLPITES Leidelmeyer 1966

  • Type species. Retistephanocolpites angeli Leidelmeyer 1966.

  • Retistephanocolpites curvimuratus sp. nov.
    Plate 4, figures 15–18

  • Holotype. 1AS-33-AM, 326.25m (1), EF: X34.

  • Paratype. 1AS-33-AM, 399.10m (1), EF: S38/2.

  • Etymology. After the curvimurate pattern of ornamentation.

  • Diagnosis. Monad, circular, mid-sized, stephanocolpate, semitectate, reticulate, homobrochate.

  • Description. Monad; amb circular; stephanocolpate; semitectate, exine 4 µm, tectum 1 µm, columellae 2 µm, nexine 1 µm, sculpture reticulate; curvimurate, homobrochate, lumina irregular, varying from 1 to 4 µm; 5-colpate, colpi 10 µm long, 5 µm wide, costate, costae 2 µm thick, 2 µm wide. Sometimes in polar view grains seem colporate.

  • Dimensions. Polar view diameter 34–(39)–42 µm long × 32–(36.5)–38 µm wide (holotype = 42 × 38 µm, paratype = 42 × 38 µm); nm = 4, no = 5.

  • Intraspecific variability. Grains that were 4-colpate were observed.

  • Comparisons. Retistephanocolpites angeli Leidelmeyer 1966 has shorter colpi and lumina. Retistephanocolpites regularis van Hoeken-Klinkenberg 1966 is smaller (24.5µm) and has smaller lumina. Retistephanocolpites gracilis Regali et al. 1974 is smaller and has more colpi (6–9). Retistephanocolpites quadraticus D'Apolito et al. 2019 has lumina 0.5 µm wide and simple colpi.

  • Stratigraphic range. T15–T16.

  • Retistephanocolpites pardoi sp. nov.
    Plate 4, figures 19–20

  • Holotype. 1AS-37-AM, 96.65m (2), EF: S35/2.

  • Etymology. After the Colombian palynologist Andres Pardo.

  • Diagnosis. Monad, circular, mid-sized, stephanocolpate, tectate, reticulate, homobrochate.

  • Description. Monad; amb circular; stephanocolpate; tectate, exine 2 µm; nexine 0.8 µm, columellae 1 µm visible under tectum, tectum 0.2 µm; sculpture reticulate supratectate, lumina irregular, 2–5 µm, muri 0.7 µm; colpi simple, 5 colpi, pointed tips, 20 µm long.

  • Dimensions. Polar view diameter 40 µm long × 39 µm wide (holotype); nm = 1, no = 1.

  • Comparisons. Retistephanocolpites regularis van Hoeken-Klinkenberg 1966 is smaller (24.5 µm) and lumina smaller. Stephanocolpites costatus Van der Hammen 1954 is smaller (26 µm) with smaller lumina. Retistephanocolpites fossulatus Jaramillo & Dilcher (2001) is also foveolate. Retistephanocolpites circularis Silva-Caminha et al. (2010) has shorter and marginate colpi.

  • Botanical affinity. Amphilophium? (Bignoniaceae).

  • Stratigraphic range. T16.

  • TRICOLPORATE

    CICHOREACIDITES Sah 1967

  • Type species. Cichoreacidites spinosus Sah 1967.

  • Cichoreacidites? flammulatus sp. nov.
    Plate 5, figures 1–6

  • Holotype. 1AS-33-AM, 262 m (2), EF: D46/2.

  • Paratype. 1AS-33-AM, 149.40m (5), EF: K34-L34.

  • Etymology. After the resemblance of the conical thickenings in the tectum to the shape of a flame.

  • Diagnosis. Monad, spheroidal, mid-sized, lophate, curvimurate, periporate?

  • Description. Monad, spheroidal; lophate; apparently periporate; tectate, exine 2 µm tall, stratified in infratectum, 2 µm tall, and tectum 1 µm tall with thickenings separated by perforations. Confocal images show infratectum with uniserial cylindrical thickenings and tectum with conical thickenings that in optical microscope look like columellae and spines, respectively; nexine indistinct; lophae curvimurate, 3–5 µm wide, muri 1.5 µm wide.

  • Dimensions. Diameter 33–(36.6)–40 µm long, 31–(34)–36 µm wide (holotype = 33 × 33 µm, paratype = 40 × 35 µm); nm = 5, no = 20.

  • Comparisons. Cichoreacidites longispinosus (Lorente 1986) Silva-Caminha et al. (2010) is tricolporate and echinate. Cichoreacidites? igapoensis D'Apolito et al. 2019 has higher columella and muri is psilate. Fenestrites gemmatus Regali et al. 1974 is gemmate.

  • Remarks. Cichoreacidites Sah 1967 accommodates lophate grains, with spines on the ridges. There is no published genus that encompasses the specific characteristics of Cichoreacidites? flammulatus sp nov., so it is placed provisionally in this genus.

  • Stratigraphic range. T16.

  • Plate 4.

    Figures 1, 2. Echitricolpites cruziae sp. nov., holotype, 1AS-37-AM, 155 m (6), EF: F49/4. Figures 3, 4. Echitricolpites cruziae sp. nov., paratype, 1AS-37-AM, 155 m (6), EF: J52/3-K. Figures 5, 6. Ladakhipollenites carmoi sp. nov., holotype, 1AS-37-AM, 84.85 m (1), EF: J27/2. Figures 7, 8. Ladakhipollenites carmoi sp. nov., paratype, 1AS-37-AM, 84.85 m (1), EF: H26/2. Figures 9, 10. Retibrevitricolpites? microreticulatus sp. nov., holotype, 1AS-33-AM, 276 (3), EF: P37-Q. Figures 11, 12. Retibrevitricolpites? microreticulatus sp. nov., paratype, 1AS-33-AM, 190 (4), EF: G44. Figures 13, 14. Rousea cavitata sp. nov., holotype, 1AS-33-AM, 232 (1), EF: R37/3. Figures 15, 16. Retistephanocolpites curvimuratus sp. nov., holotype, 1AS-33-AM, 326.25 m (1), EF: X34. Figures 17, 18. Retistephanocolpites curvimuratus sp. nov., paratype, 1AS-33-AM, 399.10 m (1), EF: S38/2, Figures 19, 20. Retistephanocolpites pardoi sp. nov., holotype, 1AS-37-AM, 96.65 m (2), EF: S35/2. Scale bars: 20 µm.

    img-z16-1_115.jpg

    FOVEOTRICOLPORITES Pierce 1961

  • Type species. Foveotricolporites rhombohedralis Pierce 1961.

  • Foveotricolporites crassus sp. nov.
    Plate 5, figures 7–9

  • Holotype. 1AS-33-AM, 276.70m (3), EF: G44.

  • Paratype. 1AS-33-AM, 282.55m (1), EF: H35.

  • Etymology. After the thickness of the exine.

  • Diagnosis. Monad, subtriangular, large-sized, tricolporate, pore indistinct, intectate, foveolate.

  • Description. Monad, amb subtriangular; tricolporate; intectate, exine 3 µm, stratification indistinct; sculpture foveolate, foveolae <1 µm, 1–2 µm apart; colpi costate, pointed tips, 22 µm long, costae 3 µm wide, pore indistinct.

  • Dimensions. Polar view diameter 24–(58.5)–60 µm long, 52–(56)–60 µm wide (holotype = 63 × 60 µm, paratype = 54 × 52 µm); nm = 2, no = 2.

  • Comparisons. Foveotricolporites crassiexinatus van Hoeken-Klinkenberg 1966 is smaller (31µm) with costate endopores. Foveotricolporites fossulatus Jaramillo & Dilcher (2001) is also fossulate. Lanagiopollis crassa (Van der Hammen & Wymstra 1964) Frederiksen 1988 has longer colpi and is smaller, with distinct columellae and variable ornamentation from psilate to reticulate.

  • Stratigraphic range. T15–T16.

  • GOMPHRENIPOLLIS Anzótegui & Cuadrado 1996

  • Type species. Gomphrenipollis pintadensis Anzótegui & Cuadrado 1996.

  • Gomphrenipollis garciae sp. nov.
    Plate 5, figures 10–14

  • Holotype. 1AS-33-AM, 276.70m (2), EF: Q39.

  • Paratype. 1AS-33-AM, 399.10m (1), EF: T45.

  • Etymology. After the Brazilian palynologist Maria Judite Garcia.

  • Diagnosis. Monad, spheroidal, mid-sized, lophate, curvimurate, periporate?, semitectate.

  • Description. Monad, spheroidal; apparently periporate; semitectate, exine 3.5 µm tall, columellae digitate, 2 µm tall, tectum 1.5 µm tall, muri slightly pointed at the corners of the lophae, nexine indistinct; lophate, polygonal to slightly curvimurate, lumina 4–8 µm wide, muri 1.5 µm wide.

  • Dimensions. Diameter 28–(29.8)–33 µm long, 27–(29.2)–32 µm wide (holotype = 30 × 29 µm, paratype = 28 × 27 µm); nm = 5, no = 11.

  • Comparisons. Gomphrenipollis minimus Silva-Caminha et al. (2010) is smaller, without digitate columellae. Fenestrites spinosus Van der Hammen 1956 and Cichoreacidites longispinosus (Lorente 1986) Silva-Caminha et al. (2010) are echinate. Cichoreacidites? igapoensis D'Apolito et al. (2019) is larger and not curvimurate.

  • Botanical affinity. Amaranthaceae?

  • Stratigraphic range. T14–T16.

  • MALVACIPOLLOIDES Anzotégui & Garalla 1986

  • Type species. Malvacipolloides densiechinata Anzotégui & Garalla 1986.

  • Malvacipolloides diversus sp. nov.
    Plate 5, figures 15–19

  • Holotype. 1AS-37-AM, 114 m (2), EF: S48/1.

  • Paratype. 1AS-33-AM, 148.58m (4), EF: N44.

  • Etymology. After the variability of the echinae.

  • Diagnosis. Monad, spheroidal, mid-sized, tricolporate, colpi simple, pore annulate, echinate, tectate.

  • Description. Monad; spheroidal; tricolporate; tectate, nexine 1.2 µm, columella 0.6 µm tall, clava-shaped; tectum 0.4 µm; sculpture echinate; echinae vary in size and shape, tips rounded or acute; echinae 6–7 µm tall, 2–4 µm wide at base, tectum thicker underneath forming a disk at the base of the echinae 2 µm thick, 7 µm wide, sparsely distributed, 5 µm apart; interspine surface micropitted; ectocolpi short, simple, 9–10 µm long; endopore 4 µm wide, circular, annulate, annuli 4 µm wide.

  • Dimensions. Diameter 47–47 µm long, 30–(38.5)–47 µm wide (holotype = 47 × 47 µm, paratype 47 × 30 µm, folded); nm = 2, no = 2.

  • Comparisons. Malvacipolloides maristellae (Muller et al. 1987) Silva-Caminha et al. (2010) is brevicolpate, with thin and smooth tectum and smaller echinae (2–4 µm) (Espinosa et al. 2020). Malvacipolloides comodoroensis Barreda 1993 has shorter colpi and shorter echinae. Malvacipolloides densiechinata Anzotégui & Garalla 1986 has a shorter interspine distance and its echinae have swollen bases.

  • Stratigraphic range. T16.

  • Malvacipolloides echibaculatus sp. nov.
    Plate 6, figures 1–5
    Malvacipolloides sp. 2 Silva-Caminha et al. 2010, p. 62, Plate 6, figures 6–7.

  • Holotype. 1AS-37-AM, 96.35m (1), EF: T34/1-2.

  • Paratype. 1AS-37-AM, 34.90m (2), EF: B33/C34.

  • Etymology. After the variability of the tips of the echinae.

  • Diagnosis. Monad, spheroidal, mid-sized, tricolporate, echinate, with some tips of spines varying in shape, tectate.

  • Description. Monad; spheroidal; tricolporate; tectate, exine 1.5 µm, nexine 0.6 µm, columellae 0.6 µm, tectum 0.3 µm; sculpture echinate, echinae 3–5 µm tall, base 0.2–0.3 µm wide, conical. The tip of spines varies between acute and blunt, occasionally forked. Sparsely and unevenly distributed. Distance between spines varies between 0.7 and 1.5 µm. Microreticulate ornamentation interspines, lumina rounded, <0.5 µm. Colpi short, 10–12µm long, simple; pores indistinct.

  • Dimensions. Polar view diameter 32–(37)–42 µm long, 32–(36.4)–39 µm (holotype = 42 × 39 µm, paratype = 39 × 38 µm); nm = 5, no = 28.

  • Comparisons. Malvacipolloides maristellae (Muller et al. 1987) Silva-Caminha et al. (2010) has different wall structure, with columella height increasing underneath spines. Brevitricolpites microechinatus Jaramillo & Dilcher (2001) is intectate. Brevitricolpites sp. 1 Jaramillo & Dilcher (2001) has smaller spines (<1µm). Brevitricolpites variabilis Gonzalez 1967 is clavate to gemmate. Malvacipolloides diversus sp. nov. has annulate pores.

  • Stratigraphic range. T16.

  • Malvacipolloides romeroae sp. nov.
    Plate 6, figures 6–10
    Malvacipolloides? sp. 3 Silva-Caminha et al. 2010, p. 62, Plate 6, figures 8–9.

  • Holotype. 1AS-27-AM, AM27-22, EF: Y70/1.

  • Paratype. 1AS-33-AM, 239.90m (2), EF: D34.

  • Etymology. After the Colombian palynologist Millerlandy Romero Baez.

  • Diagnosis. Monad, spheroidal, mid-sized, tricolp(or)ate, colpi costate, echinate, tectate.

  • Description. Monad; spheroidal; tricolp(or)ate; tectate, nexine 0.3 µm, columella 0.5 µm, tectum 0.2 µm; sculpture echinate; echinae 0.5 µm tall, sparsely distributed 2–3 µm apart; colpi costate, 14 µm long, costae 3 µm wide, tapering toward colpi ends; ends pointed; pore simple, circular, 5 µm wide; apocolpium 15 µm wide. Both colpate and colporate grains have been seen.

  • Dimensions. Polar view diameter 26–(30.2)–34 µm long, 26–(29.6)–33 µm wide (holotype = 33 × 31 µm, paratype = 34 × 33 µm); nm = 5, no = 8.

  • Comparisons. Brevitricolpites microechinatus Jaramillo & Dilcher (2001) is intectate and its pore is costate. Echitricolporites mcneillyi Germeraad et al. (1968) is smaller (23 µm).

  • Stratigraphic range. T16.

  • MARGOCOLPORITES (Ramanujam 1966 ex Srivastava 1969)
    Pocknall & Mildenhall 1984

  • Type species. Margocolporites tsukadai (Ramanajuan 1966) Srivastava 1969.

  • Margocolporites carinae sp. nov.
    Plate 6, figures 11–14

  • Holotype. 1AS-33-AM, 77.10m (6), EF: F48/2.

  • Paratype. 1AS-33-AM, 203.15m (2), EF: H43-J.

  • Etymology. After the Dutch palynologyst Carina Hoorn.

  • Diagnosis. Monad, mid-sized, tricolporate, colpi costate, costa divided by a thinning of the exine, tectate, psilate.

  • Description. Monad, amb circular; tricolporate; tectate, exine 1 µm in mesocolpi, nexine 0.5 µm, tectum 0.5 µm; columellae indistinct, sculpture psilate, ectocolpi costate, costae divided by a thinning of the exine, external costae 2 µm wide, thinning 1.5 µm wide, costae 2 µm wide, 2.5 µm thick, colpi 6 µm long, 4 µm wide; rounded tips, pore simple, circular, 4 µm.

  • Dimensions. Polar view diameter 26–(33)–37 µm long, 26–(30.8)–35 µm wide (holotype = 37 × 32 µm, paratype = 33 × 31 µm); nm = 5, no = 35.

  • Comparisons. Margocolporites rauvolfii Salard-Cheboldaeff 1978 does not have external costae; the margo is formed by a thinning of the exine all around the colpi. Margocolporites vanwijhei Germeraad et al. (1968) and M. mandjicus Boltenhagen 1976 are reticulate. Margocolporites fastigiatus Silva-Caminha et al. (2010) is fastigiate and micropitted.

  • Botanical affinity. Rauvolfia (Apocynaceae).

  • Stratigraphic range. T15–T16.

  • MULTIAREOLITES Germeraad et al. 1968

  • Type species. Multiareolites formosus (Van Der Hammen 1956) Germeraad et al. 1968.

  • Multiareolites? reticulatus sp. nov.
    Plate 6, figures 15–20

  • Holotype. 1AS-33-AM, 186.60m (2), EF: Q41/4-R.

  • Paratype. 1AS-33-AM, 203 (2): EF: H33.

  • Etymology. After the reticulate ornamentation.

  • Diagnosis. Monad, large-sized, tricolporate, semitectate, reticulate, homobrobrochate, also areolate along colpi.

  • Description. Monad, prolate; tricolporate; semitectate, exine 3 µm, nexine 1.5 µm, columellae 0.7 µm tall, tectum 0.7 µm; sculpture reticulate, homobrochate, lumina rounded ±1 µm, muri ±1 µm; ectocolpi marginate, tips pointed, 34 µm long, <1 µm wide, margo formed by one row of areoli, areoli 5–6 µm wide, 1–2 µm apart, areoli from the extremities elongated toward the end of the colpi; endopore annulate, 3 µm wide, annuli 1 µm wide.

  • Dimensions. Polar diameter 42–(46)–50 µm, equatorial diameter 25–(28)–31 µm (holotype = 50 × 31 µm, paratype = 42 × 25 µm); nm = 2, no = 2.

  • Comparisons. Multiareolites formosus (Van der Hammen 1956) Germeraad et al. (1968) is dicolporate and not reticulate.

  • Remarks. The genus Multiareolites was created to accommodate the pollen of Adhatoda, Anisotus, Beloperone, Dianthera, Jacobinia, Justicia, Kolobochilus, Monechma and Rungia (Acanthaceae) (Germeraad et al. 1968), and it is described as dicolporate. However, the extant genera Anisotes, Dicliptera and Hypoestes (Acanthaceae) present similar morphology, but can be tricolporate (Al-Hakimi et al. 2017).

  • Botanical affinity. Acanthaceae.

  • Stratigraphic range. T16.

  • RANUNCULACIDITES Sah 1967

  • Type species. Ranunculacidites communis Sah 1967.

  • Ranunculacidites reticulatus sp. nov.
    Plate 7, figures 1–3

  • Holotype. 1AS-37-AM, 96.65m (2), EF: S35/2.

  • Etymology. After the reticulate ornamentation.

  • Diagnosis. Monad, mid-sized, tricolporate, colpi operculate, semitectate, reticulate, heterobrochate, endopore indistinct.

  • Description. Monad, prolate; tricolporate; semitectate, exine 2.5 µm, nexine 1.5 µm, columellae clava-like, 0.5 µm tall, capita merged forming tectum, tectum 0.5 µm; sculpture reticulate, heterobrochate, lumina 0.5–1.5 µm smaller toward apocolpia, muri 1 µm; ectocolpi marginate, rounded tips, with operculum, 13 µm long, 5 µm wide; endopore indistinct.

  • Dimensions. Diameter 32 µm long, 31 µm wide (holotype); nm = 1, no = 1.

  • Comparisons. Ranunculacidites operculatus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher (2001) is tectate and has psilate-micropitted ornamentation. Ranunculacidites communis Sah 1967 is tricolpate, with longer colpi and finely reticulate.

  • Stratigraphic range. T16.

  • Plate 5.

    Figures 1, 2, 3. Cichoreacidites? flammulatus sp. nov., holotype, 1AS-33-AM, 262 m (2), EF: D46/2. Figure 3. White arrow: uniserial cylindrical thickenings and tectum with conical thickenings. Figures 4, 5, 6. Cichoreacidites? flammulatus sp. nov., paratype, 1AS-33-AM, 149.40 m (5), EF: K34-L34. Figure 6. White arrow: tectum thickenings separated by perforations. Figures 7, 8. Foveotricolporites crassus sp. nov., holotype, 1AS-33-AM, 276.70 m (3), EF: G44. Figures 9. Foveotricolporites crassus sp. nov. paratype, 1AS-33-AM, 282.55 m (1), EF: H35. Figures 10, 11, 12. Gomphrenipollis garciae sp. nov., holotype, 1AS-33-AM, 276.70 m (2), EF: Q39. Figures 13, 14. Gomphrenipollis garciae sp. nov., paratype, 1AS-33-AM, 399.10 m (1), EF: T45. Figures 15, 16, 17. Malvacipolloides diversus sp. nov., holotype, 1AS-37-AM, 114 m (2), EF: S48/1. Figures 18, 19. Malvacipolloides diversus sp. nov. paratype, 1AS-33-AM, 148.58.33 m (4), EF: N44. Scale bars: 20 µm.

    img-z19-1_115.jpg

    RETIBREVITRICOLPORITES Legoux 1978

  • Type species. Retibrevitricolporites obodoensis Legoux 1978.

  • Retibrevitricolporites costaporus sp. nov.
    Plate 7, figures 4–7

  • Holotype. 1AS-33-AM, 158.20m (1), EF: G54.

  • Paratype. 1AS-33-AM, 158.20m (1), EF: H49.

  • Etymology. After the costae of the pore.

  • Diagnosis. Monad, mid-sized, tricolporate, brevicolpate, colpi simple, semitectate, simplicolumellate, homobrochate, lumina irregular, pores circular, costate.

  • Description. Monad, amb triangular-obtuse-convex; tricolporate; semitectate, exine 1.5 µm, nexine 0.5 µm, tectum 0.5 µm; columellae 0.5 µm, simplicolumellate, sculpture reticulate, homobrochate, lumina irregular varying from 2 to 3 µm, muri 1 µm; ectocolpi simple, pointed tips, 10 µm long, 1 µm wide; endopore costate, circular, costae 4 µm wide, 13 µm thick. Dimensions. Polar view diameter 30–(34)–38 µm long, 30–(30.8)–32 µm wide (holotype = 37 × 32 µm, paratype = 31 × 29 µm); nm = 5, no = 55.

  • Comparisons. Retibrevitricolporites? toigoae sp. nov. is tectate with suprareticulum. Foveotricolporites pseudodubiosus Silva-Caminha et al. (2010) is foveolate and heterobrochate. Retibrevitricolporites protrudens Legoux 1978 has strongly protruding apertures. Retibrevitricolporites grandis Jaramillo & Dilcher (2001) has fine reticulum and indistinct pores. Retibrevitricolporites speciosus Jaramillo & Dilcher (2001) is strongly heterobrochate. Retibrevitricolporites yavarensis (Hoorn 1993) Silva-Caminha et al. (2010) is micro-foveolate.

  • Stratigraphic range. T16.

  • Retibrevitricolporites? toigoae sp. nov.
    Plate 7, figures 8–11

  • Holotype. 1AS-33-AM, 276 (3), EF: E33/4.

  • Paratype. 1AS-33-AM, 115 (6), EF: E23/3.

  • Etymology. After the Brazilian palynologist Marleni Toigo.

  • Diagnosis. Monad, mid-sized, tricolporate, brevicolpate, colpi slit-like, tectate, suprareticulate, homobrochate, pores lalongate, costate.

  • Description. Monad, amb circular; tricolporate; tectate, exine 2 µm thick, nexine 0.5 µm, columellae 0.5 µm visible under tectum, tectum 0.5 to 1 µm; sculpture suprareticulate, reticulum formed by muri on top of an entire tectum; homobrochate, lumina 1–2 µm wide, muri 1.5 µm wide; ectocolpi simple, ends pointed, thin, slit-like in equatorial view, 12 µm long; endopore costate, lalongate, 11 µm wide, 2–3 µm tall, costae 2 µm thick and 5 µm wide, wider at middle part of pore, thinning toward extremities of colpi.

  • Intraspecific variability. Aperture sometimes indistinct.

  • Dimensions. Equatorial view polar diameter 32 µm, equatorial diameter 40 µm (holotype); polar view diameter 41–(43.5)–45 µm long, 35–(40.7)–45 µm wide (paratype = 44 × 39 µm); nm = 5, no = 55.

  • Comparisons. Retibrevitricolporites costaporus sp. nov. is semitectate. Bombacacidites araracuarensis Hoorn 1994 is duplicolumellate. Retibrevitricolporites protrudens Legoux 1978 has strongly protruding apertures. Retibrevitricolporites grandis Jaramillo & Dilcher (2001) has fine reticulum and indistinct pores. Retibrevitricolporites speciosus Jaramillo & Dilcher (2001) is strongly heterobrochate. Retibrevitricolporites yavarensis (Hoorn 1993) Silva-Caminha et al. (2010) is micro-foveolate.

  • Stratigraphic range. T15–T16.

  • RHOIPITES Wodehouse 1933

  • Type species. Rhoipites bradleyi Wodehouse 1933.

  • Rhoipites alfredii sp. nov.
    Plate 7, figures 12–16
    Retitrescolpites sp. 1 Silva-Caminha et al. 2010, p. 64, Plate 7, figures 25–26.

  • Holotype. 1AS-33-AM, 239.90m (1), EF: G41.

  • Paratype. 1AS-33-AM, 239.90m (2), EF: H36/1.

  • Etymology. After the North American palynologist Alfred Traverse.

  • Diagnosis. Monad, mid-sized, tricolporate, semitectate, reticulate, heterobrochate, simplicolumellate, endopore circular, annulate.

  • Description. Monad pollen grain, amb circular; tricolporate; semitectate, exine 3.5µm, nexine 1µm, simplicolumellate, columellae 1µm, tectum 1.5µm; sculpture reticulate, heterobrochate, lumina 2–5µm, muri 1.5µm; foveolate at the poles, foveolae <1µm, ectocolpi simple, pointed tips, 20µm long, 12µm wide; endopore annulate, circular 7µm, annuli 2µm wide.

  • Dimensions. Polar diameter 35–(40.8)–46 µm, equatorial diameter 45–(45.4)–46 µm (holotype = 45 × 35 µm, paratype = 46 × 38 µm, folded); nm = 5, no = 9.

  • Comparisons. Rubipollis mulleri Silva-Caminha et al. (2010) has lumina decreasing toward colpi. Rhoipites cienaguensis (Dueñas 1980) Barreda 1997, R. squarrosus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher (2001), R. hispidus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher, R. baculatus Archangelsky 1973, R. pisinnus Stanley 1965 and R. nitidus Sah & Dutta 1967 all have fine reticula. Rhoipites planipolaris Jaramillo et al. 2010 is foveolate at the apocolpia. Rhoipites guianensis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher (2001) has elongated lumina and bireticulate ornamentation. Rhoipites gigantoporus Silva-Caminha et al. (2010) is homobrochate. Rhoipites manausensis D'Apolito et al. 2019 has a narrow and lalongate pore. Rhoipites? perprolatus Rodriguez et al. 2012 and R.? basicus D'Apolito et al. 2019 are tricolpate.

  • Stratigraphic range. T15–T16.

  • Plate 6.

    Figures 1, 2. Malvacipolloides echibaculatus sp. nov., holotype, 1AS-37-AM, 96.35 m (1), EF: T34/1-2. Figures 3, 4, 5. Malvacipolloides echibaculatus sp. nov. paratype, 1AS-37-AM, 34.90 m (2), EF: B33/C34. Figures 6, 7. Malvacipolloides romeroae sp. nov., holotype: AM27-22: Y70/1. Figures 8, 9, 10. Malvacipolloides romeroae sp. nov. paratype: 1AS-33-AM, 239.90 m (2), EF: D34. Figures 11, 12. Margocolporites carinae sp. nov., holotype, 1AS-33-AM, 77.10 m (6), EF: F48/2. Figures 13, 14. Margocolporites carinae sp. nov., paratype, 1AS-33-AM, 203.15 m (2), EF: H43-J. Figure 15, 16, 17. Multiareolites? reticulatus sp. nov., holotype, 1AS-33-AM, 186.60 m (2), EF: Q41/4-R. Figures 18, 19, 20. Multiareolites? reticulatus paratype: 1AS-33-AM, 203 (2): EF: H33. Scale bars: 20 µm.

    img-z21-1_115.jpg

    STEPHANOCOLPORATE

    PSILASTEPHANOCOLPORITES Leidemeyer 1966

  • Type species. Psilastephanocolporites fissilis Leidelmeyer 1966.

  • Psilastephanocolporites deoliverae sp. nov.
    Plate 7, figures 17–21

  • Holotype. 1AS-33-AM, 399.10m (2), EF: U48/2-4.

  • Paratype. 1AS-33-AM, 77.10m (6), EF: S48-49.

  • Etymology. After the Brazilian palynologist Paulo E. de Oliveira.

  • Diagnosis. Monad, mid-sized, 11 colporate, pores anastomosed, atectate, psilate, sometimes foveolate at poles.

  • Description. Monad, amb circular; stephanocolporate; atectate, exine 3µm, sculpture psilate; sometimes foveolate at poles; ectocolpi simple, long, 11 colpi, pointed tips, 22µm long, 2µm wide; endopore simple, lalongate, 5µm wide, 2µm tall, pores almost anastomosing, but not forming endocingulum.

  • Dimensions. Equatorial view polar diameter 31–(31.3)–32 µm, equatorial diameter 28–(28.3)–29 µm (holotype = 32 × 29 µm); polar view diameter 42 µm long, 41 µm wide (paratype); nm = 4, no = 18.

  • Comparisons. Psilastephanocolporites brevicolpatus Jaramillo & Dilcher (2001) has 10–14 brevicolporate apertures. Psilastephanocolporites fissilis Leidelmeyer 1966 is endocingulate and only psilate. Psilastephanocolporites brevicolpatus Jaramillo & Dilcher (2001) has very short colpi.

  • Botanical affinity. Polygalaceae.

  • Stratigraphic range. T14–T16.

  • Psilastephanocolporites endoporatus sp. nov.
    Plate 8, figures 1–4

  • Holotype. 1AS-33-AM, 320.25m (1), EF: G35.

  • Paratype. 1AS-33-AM, 320.25m (1), EF: V57.

  • Etymology. After the presence of endopores.

  • Diagnosis. Monad, 4–5-colporate, reticulate, mid-sized, tectate, psilate to microreticulate, granulose nexine at mesocolpia.

  • Description. Monad, prolate-spheroidal; stephanocolporate; 4–5 colporate, tectate, exine 4 µm, nexine 2 µm, columellae 1.5 µm, tectum 0.5 µm, sculpture varying from psilate to microreticulate; sometimes foveolate at poles; nexine thinner in the mesocolpia area, where it becomes granulose; ectocolpi simple, long, 17 µm long, 2 µm wide, ends pointed; endopore simple, circular, 3 µm wide.

  • Intraspecific variability. Sometimes the pore is annulate.

  • Dimensions. Polar diameter 28–(29)–31 µm, equatorial diameter 26–(27)–28 µm (holotype = 28 × 26 µm, paratype = 28 × 27 µm); nm = 3, no = 3.

  • Comparisons. Psilastephanocolporites daportae Herngreen 1975 is atectate. Psilastephanocolporites laevigatus Salard-Cheboldaeff 1978 is atectate, nexine thiner than the sexine, colpi costate. Psilastephanocolporites brevissimus D'Apolito et al. 2019 and P. marinamensis Hoorn 1994 have very short colpi. Psilastephanocolporites brevicolpatus Jaramillo & Dilcher (2001) has >10 short colpi. Psilastephanocolporites fissilis Leidelmeyer 1966 has more colpi and endocingulum. Psilastephanocolporites globulus van Hoeken-Klinkenberg 1966 is much smaller and intectate. P. hoekenae Herngreen 1975 has >7 colpi with concave sides. Psilastephanocolporites matapiorum Hoorn 1994 has a different shape and costate colpi. Psilastephanocolporites punctatus Salard-Cheboldaeff 1978 has short colpi and a subrectangular shape. Psilastephanocolporites variabilis Regali et al. 1974 has >5 short colpi and straight sides in polar view. Psilastephanocolporites schneideri Hoorn (1993) has much smaller and lalongate pores. Psilastephanocolporites perforatus Salard-Cheboldaeff 1978 has lalongate costate pores.

  • Stratigraphic range. T15.

  • RETISTEPHANOCOLPORITES van der Hammen & Wymstra 1964

  • Type species. Retistephanocolporites quadriporus Van der Hammen & Wymstra 1964.

  • Retistephanocolporites elizabeteae sp. nov.
    Plate 8, figures 5–8

  • Holotype. 1AS-33-AM 399.10 m (1), EF: Q34/1.

  • Paratype. 1AS-33-AM 399.10m (1), EF: R37/4.

  • Etymology. After the Brazilian palynologist Elizabete Pedrão Ferreira.

  • Diagnosis. Monad, 5-colporate, reticulate, heterobrochate, lumina wider at apocolpia, microreticulate in mesocolpia.

  • Description. Monad, amb circular; stephanocolporate; 5-colporate, semi-tectate, exine 2 µm, tectum 0.5 µm, columella, 0.5 µm, nexine 1 µm, sculpture reticulate; strongly heterobrochate, reticulum wider at apocolpia and decreases toward mesocolpia, where it is microreticulate; lumina in apocolpium is 3 to 8 µm long and abruptly changes to microreticulum <1 µm in mesocolpium; ectocolpi 16 µm long, 6 µm wide, marginate, margo 3 µm wide and decreasing toward tips of colpi, margo formed by reticulum that decreases in size around colpi, ends of colpi pointed, endopores slightly annulate, annulus 2 µm wide and 1.5 µm thick, circular, 5 µm across.

  • Dimensions. Polar view diameter 46–(47)–48 µm long, 44–(46)–48 µm wide (holotype = 48 × 48 µm, paratype = 46 × 44 µm); nm = 2, no = 2.

  • Comparisons. Retistephanocolporites festivus Gonzalez 1967 has uniform lumina. Retistephanocolporites centrimaculatus D'Apolito et al. (2019) is smaller (25µm). Jandufouria minor Jaramillo & Dilcher (2001) is microreticulate and homobrochate. Retistephanocolporites fossulatus Jaramillo & Dilcher (2001) is 4-colporate and fossulate-reticulate-foveolate.

  • Stratigraphic range. T14.

  • Botanical affinity. Ceiba (Malvaceae).

  • Plate 7.

    Figures 1, 2, 3. Ranunculacidites reticulatus sp. nov., holotype, 1AS-37-AM, 96.65 m (2), EF: S35/2. Figures 4, 5: Retibrevitricolporites costaporus sp. nov., holotype, 1AS-33-AM, 158.20 m (1), EF: G 54. Figures 6, 7: Retibrevitricolporites costaporus sp. nov., paratype, 1AS-33-AM, 158.20 m (1), EF: H49. Figures 8, 9. Retibrevitricolporites? toigoae sp. nov., holotype, 1AS-33-AM, 276 (3), EF: E33/4. Figures 10, 11. Retibrevitricolporites? toigoae sp. nov., paratype, 1AS-33-AM, 115 (6), EF: E23/3. Figure 11, 12, 13. Rhoipites alfredii sp. nov., holotype, 1AS-33-AM, 239.90 m (1), EF: G41. Figures 15, 16. Rhoipites alfredii sp. nov., paratype, 1AS-33-AM, 239.90 m (2), EF: H36/1. Figures 17, 18, 19. Psilastephanocolporites deoliverae sp. nov., holotype, 1AS-33-AM, 399.10 m (2), EF: U48/2-4. Figures 20, 21. Psilastephanocolporites deoliverae sp. nov., paratype, 1AS-33-AM, 77.10 m (6), EF: S48–49. Scale bars: 20 µm.

    img-z23-1_115.jpg

    Plate 8.

    Figures 1, 2. Psilastephanocolporites endoporatus sp. nov., holotype, 1AS-33-AM, 320.25 m (1), EF: G35. Figures 3, 4. Psilastephanocolporites endoporatus sp. nov., paratype, 1AS-33-AM, 320.25 m (1), EF: V57. Figures 5, 6. Retistephanocolporites elizabeteae sp. nov., holotype, 1AS-33-AM 399.10 m (1), EF: Q34/1. Figures 7, 8. Retistephanocolporites elizabeteae sp. nov., paratype, 1AS-33-AM 399.10 m (1), EF: R37/4. Figures 9, 10. Parkiidites marileae sp. nov., holotype, 1AS-33-AM, 232.18 m (1), EF: J35/2. Figures 11, 12. Parkiidites marileae sp. nov., paratype, 1AS-33-AM, 232.18 m (1), EF: K29/3. Scale bars: 20 µm.

    img-z24-1_115.jpg

    POLYAD

    PARKIIDITES Guinet & Salard-Cheboldaeff 1975

  • Type species. Parkiidites microreticulatus Guinet & Salard-Cheboldaeff 1975.

  • Parkiidites marileae sp. nov.
    Plate 8, figures 9–12

  • Holotype. 1AS-33-AM, 232.18m (1), EF: J35/2.

  • Paratype. 1AS-33-AM, 232.18m (1), EF: K29/3.

  • Etymology. After the Brazilian palynologist Maria Lea Salgado-Labouriau.

  • Diagnosis. Polyad, 16 monads, intectate, large-sized, verrucate.

  • Description. Polyad, formed by 16 monads, arranged in 4 monads proximally, 4 distally and 8 monads around them; polyad circular, monads shape not clear, apparently of irregular shape; exine intectate, densely verrucate, verrucae vary in size and shape, 3–7 µm long; 3 µm tall, 0.5 µm apart, rounded to oval, nexine 1 µm thick; monad 20–28 µm.

  • Dimensions. Polyad diameter 60–(69.8)–74 µm long, 50–(60.2)–71 µm wide (holotype = 70 × 62 µm, paratype = 74 × 71 µm); nm = 5, no = 11.

  • Comparisons. Polyadopollenites mariae Dueñas 1980 and Acaciapollenites myriosporites (Cookson 1954) Mildenhall 1972 have 16 monads and are psilate. Polyadopollenites vancampoi Salard-Cheboldaeff 1978 also has 16 monads and it is smaller (40–65 µm). Parkiidites macroreticulatus Salard-Cheboldaeff 1974 is reticulate.

  • Botanical affinity. Parkia (Fabaceae).

  • Stratigraphic range. T16.

  • 6. Concluding remarks

    In the present contribution we studied the systematic palynology of two boreholes (1-AS-33-AM and 1-AS-37-AM) from the Solimões Formation in western Amazonia. We found the following sequence of events: the FAD of Multimarginites vanderhammeni, Crassoretitriletes vanraadshoovenii, Fenestrites spinosus and Paleosantalaceapites cingulatus; the FCO of Grimsdalea magnaclavata; followed by the first appearance of Cichoreacidites longispinosus and Echitricolporites mcneillyi. We applied the Colombian and Venezuelan zonation schemes in order to date both cores. The age of core 33AM (404.5 m) established by Leite et al. (2017) was revised and repositioned in the early middle Miocene to late Miocene, corresponding to zones T14 (∼16–14.2 Ma), T15 (14.2–12.7 Ma), and T16 (12.7–7.1 Ma) of Jaramillo et al. (2011). Core 37AM (242.6 m) was correlated to core 33AM; it is placed almost entirely in zone T16. The basal ∼40 m had no pollen samples, but by extrapolation it could correspond to zone T15. We also revised and increased pollen counts of an outcrop in the Acre Basin, the Patos section, where we found Cyatheacidites annulatus co-occurring with Echitricolporites mcneillyi for the first time. The record of C. annulatus indicates an age around 7 Ma or younger for the outcrop. The widespread occurrence of Cyatheacidites annulatus in outcrops of the Solimões Formation indicates the existence of latest Miocene (∼7 Ma) to Pliocene sedimentation and an age older than ∼7 Ma for the uppermost sediments of boreholes. Biostratigraphic relationships also indicate that Echitricolporites mcneillyi and Ladakhipollenites? caribbiensis cannot be used as Pliocene markers as previously assigned.

    Acknowledgements

    FPRL thanks Coordenação de Aperfeiçoamento de Pessoal em Nível Superior (CAPES) for a postdoctoral scholarship (PNPD-CAPES). CD thanks Conselho Nacional de Ciência e Tecnologia (CNPq) and Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) for a research grant (568838/2017). SAFSC thanks CNPq for a research grant (476020/2013-1). We are grateful to Karina E. Kachniasz for help with pollen counts from Patos and to PETROBRAS/CENPES/PDEP/BPA (Gerência de Bioestratigrafia e Paleoecologia), Elizabete Pedrão Ferreira, and Andrea Wallau Souto-Ribeiro for confocal images. We are indebted to the editor James Riding, Carlos Jaramillo, and an anonymous reviewer for their helpful comments.

    Disclosure statement

    The authors have no potential conflict of interest to report.

    Author contributions

    FPRL processed samples, counted pollen slides, and wrote the initial draft; all authors were involved in pollen description and identification, and in writing and revision of the final manuscript.

    Funding

    This work was supported by the Coordenação de Aperfeiçoamento de Pessoal em Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) [grant 568838/2017]; and CNPq [grant 476020/2013-1].

    References

    1.

    Al-Hakimi AS, Maideen H, Saeed AA, Faridah QZ, Latiff A. 2017. Pollen and seed morphology of Justicieae (Ruellioideae, Acanthaceae) of Yemen. Flora. 233:31–50. Google Scholar

    2.

    Backman J, Raffi I, Rio D, Fornaciari E, Pälike H. 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy. 45(3): 221–244. Google Scholar

    3.

    Bissaro-Júnior MC, Kerber L, Crowley JL, Ribeiro AM, Ghilardi RP, Guilherme E, Negri FN, Souza Filho JP, Hsiou AS. 2019. Detrital zircon U-Pb geochronology constrains the age of Brazilian Neogene deposits from Western Amazonia. Palaeogeography Palaeoclimatology Palaeoecology. 516:64–70. Google Scholar

    4.

    Boonstra M, Ramos MIF, Lammertsma EI, Antoine PO, Hoorn C. 2015. Marine connections of Amazonia: evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography Palaeoclimatology Palaeoecology. 417:176–194. Google Scholar

    5.

    Boudagher-Fadel MK. 2015. Biostratigraphic and geological significance of Planktonic Foraminifera. London (UK): UCL Press; 310 p. Google Scholar

    6.

    Campbell KE, Jr., Frailey CD, Romero-Pittman L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography Palaeoclimatology Palaeoecology. 239(1–2):166–219. Google Scholar

    7.

    Caputo MV. 1984. Stratigraphy, tectonics, paleoclimatology and paleogeography of Northern Basins of Brazil [Doctoral thesis]. Santa Barbara, CA: California University. Google Scholar

    8.

    Cozzuol MA. 2006. The Acre vertebrate fauna: Age, diversity, and geography. Journal of South American Earth Sciences. 21(3):185–203. Google Scholar

    9.

    Cunha P. 2007. Bacia do Acre. Boletim de Geociencias - Petrobras, Rio De Janeiro. 15 (2):207–215. Google Scholar

    10.

    D'Apolito C, da Silva-Caminha SAF, Jaramillo C, Dino R, Soares EAA. 2019. The Pliocene–Pleistocene palynology of the Negro River, Brazil, Palynology. Palynology. 43(2):223–243. Google Scholar

    11.

    Eiras JF, Becker CR, Souza EM, Gonzaga JEF, Silva LM, Daniel LMF, Matsuda NS, Feijó FJ. 1994. Bacia do Solimões. Boletim de Geociencias - Petrobras, Rio De Janeiro. 8 (1):17–45. Google Scholar

    12.

    Espinosa BS, D'Apolito C, Silva-Caminha SAF, Ferreira MG, Absy ML. 2020. Neogene paleoecology and biogeography of a Malvoid pollen in northwestern South America. Review of Palaeobotany and Palynology. 273:104131. Google Scholar

    13.

    Foote M. 2000. Origination and extinction components of taxonomic diversity: general problems. In: Erwin DH, Wing SL, editors. Deep time: Paleobiology's perspective. Chicago, IL: The Paleontological Society; p. 74–102. Google Scholar

    14.

    Germeraad JH, Hopping CA, Muller J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology. 6(3–4):189–348. Google Scholar

    15.

    Gomes BT, Absy ML, D'Apolito C, Jaramillo C, Almeida R. 2019. Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of western Amazonia. Palynology. Google Scholar

    16.

    Gross M, Piller WE, Ramos MI, Silva-Paz JD. 2011. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil). Journal of South American Earth Sciences. 32(2):169–181. Google Scholar

    17.

    Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas E, Dino R, Carmo DA, Chemale JF. 2017. Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change. 153:51–65. Google Scholar

    18.

    Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science. 330(6006):927–931. Google Scholar

    19.

    Hoorn C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography Palaeoclimatology Palaeoecology. 105(3–4):267–309. Google Scholar

    20.

    Horbe AMC, Roddaz M, Gomes LB, Castro RT, Dantas EL, Carmo DA. 2019. Provenance of the Neogene sediments from the Solimões Formation (Solimões and Acre Basins), Brazil. Journal of South American Earth Sciences. 93:232–241. Google Scholar

    21.

    Jaramillo C, Dilcher DL. 2001. Middle Paleogene palynology of Central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica Abteilung B. 258(4–6):87–213. Google Scholar

    22.

    Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceño JD, Zapata V, et al. 2017. Miocene flooding events of western Amazonia. Science Advances. 3(5): e1601693. Google Scholar

    23.

    Jaramillo C, Rueda M, Torres V. 2011. A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology. 35(1):46–84. Google Scholar

    24.

    Jaramillo C, Rueda MJ. 2020. A morphological electronic database of Cretaceous-Tertiary and extant pollen and spores from Northern South America, v. 2020. Available from:  http://biogeodb.stri.si.edu/jaramillosdb/web/morphological/Google Scholar

    25.

    Jorge V, D'Apolito C, da Silva-Caminha SAF. 2019. Exploring geophysical and palynological proxies for paleoenvironmental reconstructions in the Miocene of western Amazonia (Solimões Formation, Brazil). Journal of South American Earth Sciences. 94:102223. Google Scholar

    26.

    Kachniasz KE, Silva-Caminha S. 2017. Palinoestratigrafia da Formação Solimões: comparação entre bioestratigrafia tradicional e o método de Associações Unitárias. Revista Brasileira de Paleontologia. 19(3): 481–490. Google Scholar

    27.

    Latrubesse E, Silva SF, Cozzuol M, Absy ML. 2007. Late Miocene continental sedimentation in the southwestern Amazonia and its regional significance: Biotic and geological evidence. Journal of South American Earth Sciences. 23(1):61–80. Google Scholar

    28.

    Latrubesse EM, Cozzuol M, Silva-Caminha SAF, Rigsby CA, Absy ML, Jaramillo C. 2010. The late Miocene paleogeography of the Amazon basin and the evolution of the Amazon River system. Earth-Science Reviews. 99(3–4):99–124. Google Scholar

    29.

    Leandro LM, Vieira CEL, Santos A, Fauth G. 2019. Palynostratigraphy of two Neogene boreholes from the northwestern portion of the Solimões Basin, Brazil. Journal of South American Earth Sciences. 89: 211–218. Google Scholar

    30.

    Leite FPR, Paz JD, Do Carmo DA, Silva-Caminha S. 2017. The effects of the inception of Amazonian transcontinental drainage during the Neogene on the landscape and vegetation of the Solimões Basin, Brazil. Palynology. 41(3):412–422. Google Scholar

    31.

    Linhares AP, Gaia VCS, Ramos M. 2017. The significance of marine micro-fossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. Journal of South American Earth Sciences. 79:57–66. Google Scholar

    32.

    Linhares AP, Ramos MIF, Gaia VCS, Friaes YS. 2019. Integrated biozonation based on palynology and ostracods from the Neogene of Solimões Basin, Brazil. Journal of South American Earth Sciences. 91: 57–70. Google Scholar

    33.

    Linhares AP, Ramos MIF, Gross M, Piller WE. 2011. Evidence for marine influx during the Miocene in southwestern Amazonia, Brazil. Geología Colombiana. 36(1):91–104. Google Scholar

    34.

    Lorente MA. 1986. Palynology and palynofacies of the Upper Tertiary in Venezuela. Dissertatione Botanicae, Band 99. Berlin: Lubrecht & Cramer Ltd. Google Scholar

    35.

    Maia RG, Godoy HK, Yamaguti HS, Moura PA, Costa FS, Holanda MA, Costa J. 1977. Projeto de carvão no Alto Solimões: Relatório final. Manaus: CPRM-DNPM; 137p. Google Scholar

    36.

    Medeiros CG, Carmo DA, Antonietto LS, Boush L. 2019. The ostracods from Solimões Formation, Brazil: an alternative biostratigraphic zonation for the neogene of Amazonia. Revista Brasileira de Paleontologia. 22(2):97–105. Google Scholar

    37.

    Medeiros CG, Carmo DA, Antonietto LS, Graça MC. 2017. Identificação de evento paleoambiental no Mioceno da Amazônia Ocidental, Formação Solimões. In: Simpósio de Geologia da Amazônia. Belém (Brazil): SBG-Núcleo Norte; pp. 790–793. Google Scholar

    38.

    Muller J, Giacomo E, Van Erve AW. 1987. A palynological zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. American Association Stratigraphic Palynologists, Contribution Series. 19:7–76. Google Scholar

    39.

    Nogueira ACR, Silveira RR, Guimarães J. 2013. Neogene-Quaternary sedimentary and paleovegetation history of eastern Solimões Basin, Central Amazon region. Journal of South American Earth Sciences. 46:89–99. Google Scholar

    40.

    Ortiz J, Jaramillo C. 2019. SDAR: stratigraphic data analysis. R Package Version 0.9-3. Available from:  https://CRAN.R-project.org/package=SDARGoogle Scholar

    41.

    Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology. 143(1–2):1–81. Google Scholar

    42.

    R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from:  https://www.R-project.orgGoogle Scholar

    43.

    Sá NP, Carvalho MA, Correia GC. 2020. Miocene paleoenvironmental changes in the Solimões Basin, western Amazon, Brazil: A reconstruction based on palynofacies analysis. Palaeogeography Palaeoclimatology Palaeoecology. 537. Google Scholar

    44.

    Salamanca S, Van Soelen EE, Van Manen MT, Flantua S, Santos RV, Roddaz M, Dantas EL, van Loon E, Damsté JS, Kim JH, et al. 2016. Amazon forest dynamics under changing abiotic conditions in the early Miocene. (Colombian Amazonia). Journal of Biogeography. 43(12):2424–2437. Google Scholar

    45.

    Silva-Caminha SAF, Jaramillo C, Absy ML. 2010. Neogene palynology of the Solimões Basin, Brazilian Amazonia. Palaeontographica Abteilung B. 284 (1–3):13–67. Google Scholar

    46.

    Silveira RR, Souza PA. 2015. Palinologia (grãos de pólen de angiospermas) das formações Solimões e Içá (bacia do Solimões), nas regiões de Coari e Alto Solimões, Amazonas. Revista Brasileira de Paleontologia. 18(3):455–474. Google Scholar

    47.

    Sundell KE, Saylor JE, Lapen TJ, Horton BK. 2019. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Scientific Reports. 9(1):4877. Google Scholar

    48.

    Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, et al. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. Google Scholar

    49.

    Wesselingh FP, Räsänen ME, Irion G, Vonhof HB, Kaandorp R, Renema W, Romero Pittman L, Gingras M. 2002. Lake Pebas: a palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainozoic Research. 1:35–81. Google Scholar

    Notes

    [1] 1Author names with publication year are provided for genera and species, but not listed in the references.

    © 2020 AASP – The Palynological Society
    Fátima Praxedes Rabelo Leite, Silane Aparecida Ferreira Da Silva-Caminha, and Carlos D'Apolito "New Neogene Index Pollen and Spore Taxa from the Solimões Basin (Western Amazonia), Brazil," Palynology 45(1), 115-141, (9 February 2021). https://doi.org/10.1080/01916122.2020.1758971
    Published: 9 February 2021
    JOURNAL ARTICLE
    27 PAGES


    SHARE
    ARTICLE IMPACT
    Back to Top