How to translate text using browser tools
1 March 2000 Polyethylene Glycol Matrix Reduces the Rates of Photochemical and Thermal Release of Nitric Oxide from S-nitroso-N-acetylcysteine
Sílvia Mika Shishido, Marcelo Ganzarolli de Oliveira
Author Affiliations +

S-nitrosothiols have many biological activities and may act as nitric oxide (NO) carriers and donors, prolonging NO half-life in vivo. In spite of their great potential as therapeutic agents, most S-nitrosothiols are too unstable to isolate. We have shown that the S-nitroso adduct of N-acetylcysteine (SNAC) can be synthesized directly in aqueous and polyethylene glycol (PEG) 400 matrix by using a reactive gaseous (NO/O2) mixture. Spectral monitoring of the S–N bond cleavage showed that SNAC, synthesized by this method, is relatively stable in nonbuf-fered aqueous solution at 25°C in the dark and that its stability is greatly increased in PEG matrix, resulting in a 28-fold decrease in its initial rate of thermal decomposition. Irradiation with UV light (λ = 333 nm) accelerated the rate of decomposition of SNAC to NO in both matrices, indicating that SNAC may find use for the photogeneration of NO. The quantum yield for SNAC decomposition decreased from 0.65 ± 0.15 in aqueous solution to 0.047 ± 0.005 in PEG 400 matrix. This increased stability in PEG matrix was assigned to a cage effect promoted by the PEG microenvironment that increases the rate of geminated radical pair recombination in the homolytic S–N bond cleavage process. This effect allowed for the storage of SNAC in PEG at −20°C in the dark for more than 10 weeks with negligible decomposition. Such stabilization may represent a viable option for the synthesis, storage and handling of S-nitrosothiol solutions for biomedical applications.

Sílvia Mika Shishido and Marcelo Ganzarolli de Oliveira "Polyethylene Glycol Matrix Reduces the Rates of Photochemical and Thermal Release of Nitric Oxide from S-nitroso-N-acetylcysteine," Photochemistry and Photobiology 71(3), 273-280, (1 March 2000).<0273:PGMRTR>2.0.CO;2
Received: 12 July 1999; Accepted: 1 December 1999; Published: 1 March 2000

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top