We describe experiments that determine the quenching kinetics by poly(ferrocenylsilane) (PFS) for platinum octaethylporphine (PtOEP) phosphorescence in toluene solution. The phosphorescence quenching process was interpreted in terms of diffusion-controlled kinetics. Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE NMR) and dynamic light scattering (DLS) were used to characterize the diffusion behavior of PFS and PtOEP in toluene solution. We found that the ferrocene group present in the repeat unit of polymer backbone is a good quencher for PtOEP phosphorescence. Quenching by the polymer involves the entire PFS polymer chain instead of individual ferrocene groups. The intrinsic quenching ability of PFS was found to be higher than that of a model compound, Bu-FS, that contains a single ferrocene group.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Photochemistry and Photobiology
Vol. 82 • No. 1
January 2006
Vol. 82 • No. 1
January 2006