We have found that for biological prenyllipids, such as plastoquinol-9, α-tocopherol quinol, and α-tocopherol, the shortest fluorescence lifetimes were found in aprotic solvents (hexane, ethyl acetate) whereas the longest lifetimes were those of ubiquinonol-10 in these solvents. For all the investigated prenyllipids, fluorescence lifetime in alcohols increased along with an increase in solvent viscosity. In a concentrated hexane solution, the lifetimes of prenylquinols considerably decreased. This contrasts with methanol solutions, which is probably due to the self-association of these compounds in aprotic solvents. We have also found a correlation of the Stokes shift of prenyllipids fluorescence with the orientation polarizability of the solvents. Based on data obtained in organic solvents, measurements of the fluorescence lifetimes of prenyllipids in liposomes allowed an estimation of the relative distance of their fluorescent rings from the liposome membrane surface, and was found to be the shortest for α-tocopherol quinol in egg yolk phosphatidylcholine liposomes, and increased in the following order: α-tocopherol in dipalmitoyl phosphatidylcholine liposomes < α-tocopherol < plastoquinol-9 < ubiquinol-10 in egg-yolk phosphatidylcholine liposomes.
How to translate text using browser tools
1 September 2006
Fluorescence Lifetimes Study of α-Tocopherol and Biological Prenylquinols in Organic Solvents and Model Membranes
Jerzy Kruk,
Beata Myśliwa-Kurdziel,
Małgorzata Jemioła-Rzemińska,
Kazimierz Strzałka
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Photochemistry and Photobiology
Vol. 82 • No. 5
September 2006
Vol. 82 • No. 5
September 2006