How to translate text using browser tools
11 August 2017 Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells
Nori Nakamura, Yuko Hirai, Yoshiaki Kodama, Kanya Hamasaki, Harry M. Cullings, Kismet A. Cordova, Akio Awa
Author Affiliations +
Abstract

Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic trends or factors affecting physically estimated doses.

©2017 by Radiation Research Society
Nori Nakamura, Yuko Hirai, Yoshiaki Kodama, Kanya Hamasaki, Harry M. Cullings, Kismet A. Cordova, and Akio Awa "Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells," Radiation Research 188(4), 412-418, (11 August 2017). https://doi.org/10.1667/RR14832.1
Received: 9 May 2017; Accepted: 1 July 2017; Published: 11 August 2017
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top