How to translate text using browser tools
2 May 2023 Downregulation of β-Catenin Contributes to type II Alveolar Epithelial Stem Cell Resistance to Epithelial-Mesenchymal Transition by Lowing Lin28/let-7 Ratios in Fibrosis-Resistant Mice after Thoracic Irradiation
Dandan Xuan, Chunyan Du, Wendi Zhao, Jianwei Zhou, Shan Dai, Tingting Zhang, Mengge Wu, Jian Tian
Author Affiliations +
Abstract

Transdifferentiation of type II alveolar cells (AECII) is a major cause for radiation-induced lung fibrosis (RILF). Cell differentiation phenotype is determined by Lin28 (undifferentiated marker) and let-7 (differentiated marker) in a see-saw-pattern. Therefore, differentiation phenotype can be extrapolated based on Lin28/let-7 ratio. Lin28 is activated by β-catenin. To the best of our knowledge this study was the first to use the single primary AECII freshly isolated from irradiated lungs of fibrosis-resistant C3H/HeNHsd strain to further confirm RILF mechanism by comparing its differences in AECII phenotype status/state and cell differentiation regulators to fibrosis-prone C57BL/6j mice. Results showed that radiation pneumonitis and fibrotic lesions were seen in C3H/HeNHsd and C57BL/6j mouse strains, respectively. mRNAs of E-cadherin, EpCAM, HOPX and proSP-C (epithelial phenotype biomarkers) were significantly downregulated in single primary AECII isolated from irradiated lungs of both strains. Unlike C57BL/6j, α-SMA and Vimentin (mesenchymal phenotype biomarkers) were not upregulated in single AECII from irradiated C3H/HeNHsd. Profibrotic molecules, TGF-β1 mRNA was upregulated and β-catenin was significantly downregulated in AECII after irradiation (both P < 0.01). In contrast, transcriptions for GSK-3β, TGF-β1 and β-catenin were enhanced in isolated single AECII from irradiated C57BL/6j (P < 0.01–P < 0.001). The Lin28/let-7 ratios were much lower in single primary AECII from C3H/HeNHsd after irradiation vs. C57BL/6j. In conclusion, AECII from irradiated C3H/HeNHsd did not undergo epithelial-mesenchymal transition (EMT) and lower ratios of Lin28/let-7 contributed to AECII relatively higher differentiated status, leading to increased susceptibility to radiation stress and a failure in transdifferentiation in the absence of β-catenin. Reducing β-catenin expression and the ratios of Lin28/let-7 may be a promising strategy to prevent radiation fibrosis.

Dandan Xuan, Chunyan Du, Wendi Zhao, Jianwei Zhou, Shan Dai, Tingting Zhang, Mengge Wu, and Jian Tian "Downregulation of β-Catenin Contributes to type II Alveolar Epithelial Stem Cell Resistance to Epithelial-Mesenchymal Transition by Lowing Lin28/let-7 Ratios in Fibrosis-Resistant Mice after Thoracic Irradiation," Radiation Research 200(1), 32-47, (2 May 2023). https://doi.org/10.1667/RADE-22-00165.1
Received: 18 September 2022; Accepted: 19 April 2023; Published: 2 May 2023
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top