Open Access
How to translate text using browser tools
31 August 2020 Tick Infection of Caiman crocodilus fuscus at the Hidroprado Hydroelectric Dam in Colombia: New Records, Parasite Prevalence, and Blood Loss Rate
Cristina Mora-Rivera, Fernando Suarez-Páez, Gualberto Pacheco-Sierra, Laura Vargas-Cuevas, Mónica Padilla-Barreto
Author Affiliations +
Abstract

The main goal of this research was to identify the hard ticks (Acari: Ixodidae) found in 10 individuals of spectacled caiman (Caiman crocodilus fuscus) from 349 individuals captured at the Hidroprado hydroelectric dam in the Department of Tolima, Colombia. Parasite prevalence was 2.9%. A total of 40 ticks were collected and two species identified: Amblyomma dissimile (n = 39) and Rhipicephalus sanguineus (n = 1). This is the second record of A. dissimile in C. crocodilus in Colombia and the first record of R. sanguineus in crocodilians. The natural infection of C. c. fuscus by A. dissimile establishes this species as a host in the life cycle of this tick. Similarly, parasitism by R. sanguineus indicates C. c. fuscus as a potential host for this tick, which is important since it is associated with domestic animals and has a high potential for transmission of zoonotic diseases. Our results highlight the parasitic relationship between ticks and one of the most resistant wild vertebrates: caimans. The prevalence, although not high, establishes the potential of ticks to parasitize different species and to be a vector of diseases for new groups of hosts.

INTRODUCTION

Ticks are transitory, hematophagous parasites that feed on mammals, birds, amphibians, and reptiles with environmental phases (oviposition and molt) and intermittent parasitic phases on the host during reproduction and feeding (Polanco-Echeverry and Ríos-Osorio, 2016; Luz et al., 2018). During the parasitic phases, they are of great importance because they cause ulcerative damage in the epithelium due to mechanical action, mild to severe anemia due to blood-sucking, toxic effects due to enzymes and neurotoxins present in saliva and, transmission of enzootic and zoonotic pathogens (Cortés-Vecino, 2011; Manzano et al., 2012; Oteo Revuelta, 2016; Cabezas-Cruz et al., 2018). The risk of exposure to ticks increases the vulnerability of animals to disease, generating pathologies that can reduce the parasitized population if individuals have not developed immune responses against them (Wikel, 1984).

Ticks are only occasionally found in crocodiles because they are not their habitual hosts (Huchzermeyer, 2003). However, tick infestations have been reported in 11 crocodilian species. Kwak et al., (2019) suggests there is a certain level of ecological overlap (water edge) between crocodilians and ticks where interactions between them would be facilitated. Crocodilians have a highly effective immune system (Siroski et al., 2009, 2013; Zimmerman et al., 2010), which makes it difficult to observe symptoms that are directly related to parasitism and highlights the need to broaden knowledge of the interactions between crocodiles and ticks and monitor the health of individuals in nature.

Currently, in Crocodylus Laurenti, 1768, Paleosuchus Gray, 1862 and Caiman Spix, 1825 genera, 21 records of ticks of the genus Amblyomma Koch, 1844 have been made, with identification of seven species: A. dissimile Koch, 1844 (Rainwater et al., 2001; Pietzsch et al., 2006, Lima and Gianizella, 2015; Charruau et al., 2016; Witter et al., 2016), A. rotundatum Koch, 1844 (Peralta et al., 1995; Morais et al., 2010; Rodríguez-Vivas et al., 2016; Witter et al., 2016; Acosta et al., 2019), A. grossum (Pallas, 1772) (Huchzermeyer, 2003), A. humerale Koch, 1844 (Labruna et al., 2005; Witter et al., 2016), A. mixtum Koch, 1844 (Rodríguez-Vivas et al., 2016); A. exornatum Koch, 1844 (Schwetz, 1927; Burridge, 2001; Huchzermeyer, 2003; Tellez, 2014) and A. cordiferum Neumann, 1899 (Kwak et al., 2019). In Colombia, only A. dissimile (one male and one female) has been recorded in Caiman crocodilus Linnaeus, 1758 at Caribbean region (Santodomingo et al., 2018).

The main objectives of this work were to identify the hard ticks (Acari: Ixodidae) found in the spectacled caiman, Caiman crocodilus fuscus (Cope, 1868), captured at the Hidroprado hydroelectric dam in the Department of Tolima, estimate parasite prevalence, and identify the risk of blood loss through blood sucking by ticks, considering the approximate blood consumption of ticks in the parasitized individuals.

MATERIALS AND METHODS

Study area

This study was undertaken at the hydroelectric dam of the Prado River (Hidroprado), in southeastern Department of Tolima, Colombia (03°45′N;74°50′W). Its area is 4,300 ha and has a warm climate (25–30°C) and rainfall of 700–2000 mm (Pizano and García, 2014). Hidroprado includes secondary forest patches, natural shrub vegetation, natural pastures used for extensive livestock farming, rural housing, private cabanas, and hotel infrastructure (Cortolima, Corpoica, Universidad del Tolima, 2006).

Collection and identification of ectoparasites

Given the size of the caimans (< 60 cm total length), the individuals were captured and released by hand or with the aid of a Pilstrom clamp or steel loop (Domínguez-Laso et al., 2011). Captured caimans were carefully examined for ectoparasites and the lesions they caused. The areas of the body where the ticks were distributed were recorded and photographed and ticks were extracted manually using a blunt-tipped forceps to ensure the extraction of complete gnathosomes (oral portions). Ticks were stored in jars with 100 mL of Hood's solution (95 mL 75% ethanol, 5 mL glycerin) for subsequent taxonomic and morphological identification at the parasitology laboratory of the Facultad de Medicina Veterinaria y Zootecnia of the Universidad Cooperativa de Colombia, Ibague-Espinal. The ticks were identified with the aid of a Leica EZ4® stereoscope and a Leica DM300® microscope and taxonomic keys to the ticks of the family Ixodidae (Barros-Battesti et al., 2006; Martins et al., 2014; Andreotti et al., 2016).

Parasite prevalence and blood loss rate

To estimate parasite prevalence, we calculated the proportion of captured Caiman crocodilus fuscus that were positive for ticks. To estimate the blood loss rate due to ticks, we considered the following parameters: (1) Blood volume of parasitized individuals based on the percentage of blood relative to live weight: Fleming and Fontenot (2014) determined this to be 3.5–5.5% in crocodilians, and we assumed the highest value (5.5%, expressed in mL) in order to avoid underestimating blood volume (Total blood volume = live weight of the animal × 0.055); (2) Daily consumption of blood by ticks: For Amblyomma americanum (Linnaeus, 1758), Koch and Sauer (1984) determined that nymphs and males consume 0.00135 mL/d and adult females consume 0.80 mL/d. We used these values because information this species is part of the same tick genus. (Daily consumption of blood = number of ticks × blood intake of tick nymphs, males, or females) and (3) The maximum volume of blood that can be extracted without significant health impacts: Blood extraction greater than 10% of total blood volume can result in hypovolemic shock in acute cases and anemia in chronic cases (Fleming and Fontenot, 2014). Therefore, we propose that there is no health risk when blood consumption of all ticks is less than 10% of the total blood volume and risk when blood loss exceeds 10% (maximum volume of blood loss = live weight of the animal × 0.1). We employed 10% as our criterion for health risk from blood loss because the spectacled caiman captured were small (25–60 cm), and at this stage they are more vulnerable to loss blood.

RESULTS

A total of 349 spectacled caimans were captured throughout the Hidroprado hydroelectric dam, among which ticks were observed in 10 individuals ranging in size from 25–60 cm in total length. As such, the estimated prevalence of tick parasites in C. c. fuscus was 2.87%. A total of 40 ticks were collected, of which 37 were adults and 3 were nymphs. Two species were identified: Amblyomma dissimile (29 females and 7 males; Fig. 1) and Rhipicephalus sanguineus (Latreille, 1806) (1 female; Fig. 2). The 3 nymphs were identified as Amblyomma sp. due to the lack of specific taxonomic keys and incompletely developed morphological characteristics, which hindered microscopic identification (Lah et al., 2016). The ticks were distributed as follows: 20 ticks on the ventral part of the hind limbs (Fig. 3E); 5 in the axilla (Fig. 3G); 4 on the ventral part of the lower jaw (Fig. 3B); 4 at the base of the tail (Fig. 3C, 3I); 2 in the ear (Fig. 3D); 2 on the neck (Fig. 3F); 1 on the lateral portion of the lower jaw (Fig. 3D); 1 on the lower left eyelid (Fig. 3H); and 1 on the dorsal part of the left hind limb (Fig. 3A).

Regarding risk to individuals due to blood loss by ticks, the results indicate that three individuals presented no risk (Table 1). Those individuals were each parasitized by a single tick, with resulting blood consumption less than 10% of total blood volume. In contrast, seven individuals were at risk, since blood consumption was 13–40% of the total blood volume. In the medical review, we observed that eight individuals showed no clinical signs of disease or lesions. However, two individuals exhibited lesions due to the mixed action of the ticks (mechanical and blood sucking). One individual with a tick adhered to the lower left eyelid was observed with inflammation of the eyelid margin, although no infection or involvement of the eye or the nictitating membrane was observed (Fig. 4A). The second individual exhibited an irregular skin lesion 0.8 mm wide in the middle area of the neck (left side) with loss of dermis and epidermis resulting from the bite of an engorged adult female (Fig. 4B).

Table 1.

Risk from blood loss in Caiman crocodilus fuscus. LT = Total Length; VS = total blood volume; G = total number of ticks; H = females; M-N = males and nymphs; CSTG = blood intake of total ticks.

img-z3-2_42.gif

DISCUSSION

Ticks were collected from Caiman crocodilus fuscus in areas with patches of secondary forests, under anthropic influence, and high density of domestic animals with free access to water at the Hidroprado hydroelectric dam. Contact between domestic and wild or synanthropic species increases the opportunity for ticks to infect a great diversity of potential hosts, creating new opportunities for dispersion of infectious agents (Estrada-Peña and De la Fuente, 2014; Cable et al., 2017; Young et al., 2017). The low prevalence of ticks in spectacled caimans at this locality suggests that infection is opportunistic. Rhipicephalus sanguineus is a parasite with preference for domestic mammals; however, we observed an engorged female parasitizing an individual of C. c. fuscus, indicating that R. sanguineous is a potential ectoparasite of wildlife.

Figure 1.

Amblyomma dissimile. (A) Presence of festoons. (B) Dentition (3/3). (C) Subtriangular capitulum. (D) Posterior anal groove. (E) Ornamented dorsal scutum. (F) Coxa I, II, III, and IV with 2 spurs present.

img-z3-8_42.jpg

Rhipicephalus sanguineus is a cosmopolitan species and one of the main vectors of rickettsiosis (Rickettsia conorii Brumpt, 1932; and R. rickettsia Brumpt, 1922), anaplasmosis (Anaplasma platys Harvey et al., 1978 and A. phagocytophilum [Foggie, 1949]), Ehrlichia canis (Donatien and Lestoquard, 1935), Hepatozoon canis (James, 1905), and Babesia canis (Piana and Galli-Valerio, 1895) (Jongejan and Uilenberg, 2004). Babesia is an especially important hemoparasite because it causes morbidity and mortality in domestic animals, also affecting wild animals and, occasionally, humans, and is considered a pathogen of emerging zoonoses (Colwell et al., 2011). Mora (2009) recorded the presence of Babesia sp. in Crocodylus acutus (Cuvier, 1807) and C. moreletii (Duméril and Bibron, 1851) in captivity and nature but did not record any species of tick as a vector of this hemoparasite. However, Polanco-Echeverry and Ríos-Osorio (2016) indicated that the rate of infection by tick-transmitted Babesia is directly related to the abundance of the vector. Rhipicephalus sanguineus has been studied from the perspectives of biology (Dantas-Torres, 2010; Sanches et al., 2016; Labruna et al., 2017; Das et al., 2017), ecology (Dantas-Torres and Otranto, 2011; Gray et al., 2013; Szabó et al., 2013; Zemtsova et al., 2016), and epidemiology (Paz et al., 2010; Zemtsova et al., 2010; Socolovschi et al., 2012; Latrofa et al., 2014) due to its medical importance, but studies related to vector-parasite-host coexistence in the epidemiological chain in reptiles are lacking.

Figure 2.

Rhipicephalus sanguineus. (A) marginal groove. (B) Hypostome. (C) Scapular groove. (D) Anus. (E) Genital aperture. (F) Coxa I (with large spurs), coxa II, coxa III, and coxa IV with spurs short.

img-z4-1_42.jpg

Figure 3.

Corporal distribution of the ticks on spectacled caiman. (A) Dorsal part of left leg. (B) Lower jaw. (C) Ventral part of left leg. (D) Jaw and ear. (E) Ventral part of right leg. (F) Neck. (G) Right axilla. (H) Lower left eyelid. (I) Base of tail.

img-z4-3_42.jpg

Figure 4.

Cutaneous lesions due to the mixed action of the ticks. (A) Inflammation of the palpebral margin. (B) Irregular skin lesion.

img-z5-1_42.jpg

Reptiles and amphibians are the natural hosts of Amblyomma dissimile (Voltzit, 2007), but this species has also been reported to parasitize mammals, birds, and humans (Guglielmone and Nava, 2006; Guzmán-Cornejo et al., 2011; Scott and Durden, 2015). Amblyomma dissimile is a potential vector of Ehrlichia ruminantium (Cowdry, 1925), the causal agent of hydropericardium in cattle and other ungulates (Peter et al., 2002). Kiel et al. (2006) reported the infection of Bitis gabonica Duméril et al., 1854 with an attenuated species of E. ruminantium that has adapted to infect reptiles. Further, A. dissimile is a potential vector of Rickettsia sp. strain colombianensi (Miranda et al., 2012), R. bellii Philip et al., 1983, R. monacensis Simser et al., 2002, and R. tamurae Fournier et al., 2006, emergent zoonotic pathogens with clinical and health importance. Amblyomma dissimile has been reported in Crocodylus acutus, Cr. moreletii, Caiman crocodilus (Linnaeus, 1758) and Ca. c. chiapasius (Bocourt, 1876) (Rainwater et al., 2001; Pietzsch et al., 2006; Lima and Gianizella, 2015; Charruau et al., 2016; Witter et al., 2016; Santodomingo et al., 2018). Although the role of crocodilians in the cycles of enzootic diseases is not clear (Charruau et al., 2016), A. dissimile could play a role as a reservoir in the maintenance of rickettsiae in reptile populations (Jongejan, 1992).

Clinically, the skin lesions found in spectacled caimans in the present study do not represent a health risk; however, in adverse environmental conditions and stress, lesions or complex skin infections can cause weakness and enable secondary infections (Huchzermeyer, 2003; Merchant and Britton, 2006). An important aspect to keep in mind is that in wild crocodiles it is difficult to observe symptoms that are related to ectoparasites or parasitemia.

Chaeychomsri et al. (2016) determined that crocodiles are capable of producing and replacing erythrocytes and hemoglobin at normal levels in one week, which allows them to lose approximately 25% of the total blood volume without a negative effect on health. However, that value was obtained under experimental conditions in individuals of Crocodylus siamensis Schneider, 1801 with an average weight of 27 kg and 191 cm total length. We employed 10% as our criterion for health risk from blood loss because the spectacled caiman captured were small (25–60 cm), and in this stage they are more vulnerable to blood loss.

Our results showed that blood consumption by ticks at the Hidroprado hydroelectric dam could put spectacled caimans at risk of regenerative anemia, which depends directly on the size of the specimens and the extent of the parasitic infection, with the smallest individuals being most vulnerable due to their lower total blood volume. However, our criterion of health risk must be interpreted with caution because it is incomplete, given that blood sucking by Amblyomma dissimile persists for 24–32 d (Schumaker and Barros, 1994), and we do not take into account the capacity of blood generation in spectacled caimans.

ACKNOWLEDGMENTS

We acknowledge the Universidad del Tolima for financial support for field work and the Facultad de Medicina Veterinaria y Zootecnia of the Universidad Cooperativa de Colombia, Ibague-Espinal for logistic support with the parasitology laboratory. Luis Carlos Medina, Sebastián Quijano, and Juan Pablo Monrroy of Semillero de Investigación en Fauna Silvestre provided support for field trips. We are grateful to Carlos Ignacio Piña for his review and comments for the improvement of the final document. In this study, the authors participated as follows: CM-R, LV, and FS carried out the sampling in the field and the laboratory analyzes. MP supported laboratory analyses. CM-R and GP-S analyzed and interpreted the data and wrote the manuscript. This study was carried out under the collection permit for the Universidad of Tolima, Resolution No. 3758 of 16 Nov 2016 of Corporación Autónoma Regional del Tolima.

REFERENCES

1.

Acosta I.C.L., Martins T.F., Nóbrega Y.C., Mantovani T.C., Silva-Soares T., Santos M.R.D., … Labruna M.B. 2019. First record of Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae) parasitizing wild Caiman latirostris (Reptilia: Crocodylidae) in the Atlantic rainforest biome, southeastern Brazil. Herpetology Notes 12:9–11. Google Scholar

2.

Andreotti R., Koller W., García M. 2016. Carrapatos: Protocolos e Técnicas para Estudo. Embrapa, Brasilia. Google Scholar

3.

Barros-Battesti D.M., Arzua M., Bechara G.H. 2006. Carrapatos de importância médico-veterinária da região neotropical: um guia ilustrado para identificação de espécies. Vox/ICTTD-3/Butantan, São Paulo. Google Scholar

4.

Bocourt M.F. 1876. Note sur quelques reptiles de l'isthme de Tehuantepec (Mexique) donnés par M. Sumichrast au muséum. Journal de Zoologie 5:386–411. Google Scholar

5.

Brumpt E. 1922. Précis de Parasitologie. Masson, Paris. Google Scholar

6.

Brumpt E. 1932. Longevité du virus de la fièvre boutonneuse (Rickettsia conorii, n. sp.) chez la tique Rhipicephalus sanguineus . Compte rendu des séances de la Société de Biologie 110:1119–1202. Google Scholar

7.

Burridge M.J. 2001. Ticks (Acari: Ixodidae) spread by the international trade in reptiles and their potential roles in dissemination of diseases. Bulletin of Entomological Research 91:3–23.  DOI  Google Scholar

8.

Cabezas-Cruz A., Vayssier-Taussat M., Greub G. 2018. Tick-borne pathogen detection: what's new? Microbes and Infection 20:441–444.  DOI  Google Scholar

9.

Cable J., Barber I., Boag B., Ellison A.R., Morgan, E.R., Murray K., Booth M. 2017. Global change, parasite transmission and disease control: lessons from ecology. Philosophical Transactions of the Royal Society B 372:1–17.  DOI  Google Scholar

10.

Chaeychomsri W., Yamkong S., Chaeychomsri S., Siruntawineti J. 2016. Effects of large volume crocodile blood collection on hematological values of Siamese Crocodiles (Crocodylus siamensis). Journal of Advanced Agricultural Technologies 3:252–257.  DOI  Google Scholar

11.

Charruau P., Pérez-Flores J., Cedeño-Vázquez J.R., González-So- lis D., González-Desales G.A., Monroy-Vilchis O., Desales-Lara M.A. 2016. Occurrence of Amblyomma dissimile on wild crocodylians in southern Mexico. Diseases of Aquatic Organisms 121:167–171.  DOI  Google Scholar

12.

Colwell D.D., Dantas-Torres F., Otranto D. 2011. Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Veterinary Parasitology 1821:14–21.  DOI  Google Scholar

13.

Cope E.D. 1868. On the crocodilian genus Perosuchus. Proceedings of the Academy of Natural Sciences of Philadelphia 20:203. Google Scholar

14.

Cortés-Vecino J. 2011. Garrapatas: estado actual y perspectivas. Biomédica 31:3–315. Google Scholar

15.

Cortolima, Corpoica, Universidad del Tolima. (2006). Plan de Ordenación y Manejo de la Cuenca Hidrográfica Mayor del Río Prado. Informe Final. Cortolima, Ibagué. Google Scholar

16.

Cowdry E.V. 1925. Studies on the etiology of heartwater: I. Observation of a rickettsia, Rickettsia ruminantium (n. sp.), in the tissues of infected animals. The Journal of Experimental Medicine 42:231–252. Google Scholar

17.

Cuvier G. 1807. Sur les diffèrentes espèces de crocodilies vivans et sur leurs caractères distinctifs. Annales Muséum National D'Histoire Naturelle, pár les professeurs de cet establishment 10:8–86. Google Scholar

18.

Dantas-Torres F. 2010. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus . Parasites & Vectors 3:1–11.  DOI  Google Scholar

19.

Dantas-Torres, F., Otranto, D. 2011. Rhipicephalus sanguineus on dogs: relationships between attachment sites and tick developmental stages. Experimental and Applied Acarology 53:389–397.  DOI  Google Scholar

20.

Das G., Neog R., Sarmah P.C., Pathak P. 2017. Study of biology of brown dog tick, Rhipicephalus sanguineus . North-East Veterinarian 16:29–31. Google Scholar

21.

Domínguez-Laso J., Hinojosa-Falcón O., Padilla-Paz S. 2011. Método de marcaje y recaptura de ejemplares (MRE). Pp. 125–175, in Sánchez Herrera O., López Segurajáuregui G., García Naranjo Ortiz De La Huerta A., Benítez Díaz H. (Eds.), Programa de Monitoreo del Cocodrilo de Pantano (Crocodylus moreletii) México-Belice-Guatemala. México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México. Google Scholar

22.

Donatien A., Lestoquard F. 1935. Existence en Algerie d'une Rickettsia du chien. Bulletin de la Société de Pathologie Exotique 28:418–419. Google Scholar

23.

Duméril A., Bibron G. 1851. Sauriens ou lézards. Pp. 26–197, in Duméril M.C., Duméril A. (Eds.), Catalogue Méthodique de la Collection des Reptiles. Gide et Baudry, Paris. Google Scholar

24.

Duméril A.M.C., Bibron G., Duméril A. 1854. Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Tome Septième. Duexiéme Partie. Librarie Enclyclopedique de Roret, Paris.  DOI  Google Scholar

25.

Estrada-Peña A., De la Fuente J. 2014. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Research 108:104–128.  DOI  Google Scholar

26.

Fleming J.G., Fontenot D.K. 2014. Crocodilians (Crocodiles, Alligators, Caiman, Gharial). Pp. 38–48, in Miller RE., Murray E., Fowler ME. (Eds.). Fowler's Zoo and Wild Animal Medicine, Volume 8. Elsevier Health Sciences, St. Louis. Google Scholar

27.

Foggie A. 1949. Studies on tick-borne fever in sheep. Journal of General Microbiology 3:1. Google Scholar

28.

Fournier P.E., Takada N., Fujita H., Raoult D. 2006. Rickettsia tamurae sp. nov., isolated from Amblyomma testudinarium ticks. International journal of systematic and evolutionary microbiology 56:1673–1675.  DOI  Google Scholar

29.

Gray J.E. 1862. A synopsis of the species of alligator. Annals and Magazine of Natural History, Series 3 59:327–331.  DOI  Google Scholar

30.

Gray J., Dantas-Torres F., Estrada-Peña A., Levin M. 2013. Systematics and ecology of the brown dog tick, Rhipicephalus sanguineus . Ticks and Tick-borne Diseases 4:171–180.  DOI  Google Scholar

31.

Guglielmone A.A., Nava S. 2006. Argentinean ticks of the genus Amblyomma (Acari: Ixodidae): distribution and hosts. Revista de Investigaciones Agropecuarias 35:133–153. Google Scholar

32.

Guzmán-Cornejo C., Robbins R.G., Guglielmone A.A., Montiel-Parra G., Pérez T.M. 2011. The Amblyomma (Acari: Ixodida: Ixodidae) of Mexico: identification keys, distribution and hosts. Zootaxa 2998:16–38. Google Scholar

33.

Harvey J.W., Simpson C.F., Gaskin J.M. 1978. Cyclic thrombocytopenia induced by a Rickettsia-like agent in dogs. Journal of Infectious Diseases 137:182–188  DOI  Google Scholar

34.

Huchzermeyer F.W. 2003. Crocodiles: Biology, Husbandry and Diseases. CABI Publishing, Wallingford. Google Scholar

35.

James S.P. 1905. A new leucocytozoon of dogs. British Medical Journal 1:1361.  DOI  Google Scholar

36.

Jongejan F. 1992. Experimental transmission of Cowdria ruminantium (Rickettsiales) by the American reptile tick Amblyomma dissimile Koch, 1844. Experimental & Applied Acarology 15:117–121.  DOI  Google Scholar

37.

Jongejan F., Uilenberg, G. 2004. The global importance of ticks. Parasitology 129:117–121.  DOI  Google Scholar

38.

Kiel J.L., Alarcon R.M., Parker J.E., Vivekananda J., Gonzalez Y.B., Stribling L.J., Andrews C.J. 2006. Emerging tick-borne disease in African vipers caused by a Cowdria-like organism. Annals of the New York Academy of Sciences 1081:434–442.  DOI  Google Scholar

39.

Koch C.L. 1844. Systematische Ubersicht uber die Ordnung der Zecken. Archiv für Naturgeschichte 10:217–239.  DOI  Google Scholar

40.

Koch H.G., Sauer J.R. 1984. Quantity of blood ingested by four species of hard ticks (Acari: Ixodidae) fed on domestic dogs. Annals of the Entomological Society of America 77:142–146.  DOI  Google Scholar

41.

Kwak M.L., Foo M., Pocklington K., Hsu C.D., Cheong W., How C.B., … Tahir, M.G. 2019. Tick–crocodilian interactions: a review, with the first record of tick (Acari: Ixodidae) infestation in the saltwater crocodile (Crocodylus porosus), and a concise host-parasite index. Experimental and Applied Acarology 78:127–132.  DOI  Google Scholar

42.

Labruna M.B., Camargo L.M.A., Terrassini F.A., Ferreira F., Schumaker T.T., Camargo E.P. 2005. Ticks (Acari: Ixodidae) from the state of Rondônia, western Amazon, Brazil. Systematic and Applied Acarology 10:17–32.  DOI  Google Scholar

43.

Labruna M.B., Gerardi M., Krawczak F.S., Moraes-Filho J. 2017. Comparative biology of the tropical and temperate species of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) under different laboratory conditions. Ticks and Tick-borne Diseases 8:146–156.  DOI  Google Scholar

44.

Lah E.F.C., Yaakop S., Ahamad M., George E., Nor S.M. 2016. Precise identification of different stages of a tick, Ixodes granulatus Supino, 1897 (Acari: Ixodidae). Asian Pacific Journal of Tropical Biomedicine 6:597–604.  DOI  Google Scholar

45.

Latrofa M.S., Dantas-Torres F., Giannelli A., Otranto D. 2014. Molecular detection of tick-borne pathogens in Rhipicephalus sanguineus group ticks. Ticks and Tick-borne Diseases 5:943–946.  DOI  Google Scholar

46.

Latreille P.A. 1806. Genera crustaceorum et insectorum secundum ordinem naturalem in familias disposita, iconibus exemplisque plurimis explicata. Tomus primus. A. Koenig, Parisiis.  DOI  Google Scholar

47.

Laurenti J.N. 1768. Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austriacorum. Joan. Thom. Nob. de Trattern, Viennae.  DOI  Google Scholar

48.

Lima R.S., Gianizella S.L. 2015. Amostragem ambiental de carrapatos ixodídeos no fragmento florestal do campus da UFAM de Manaus. Pp. 23–24, inAnonymous, Livro de Resumos do III Simpósio CEN-BAM e PPBio Amazonia Occidental. Centro de Estudos Integrados da Biodiversidade Amazônica, Manaus. Google Scholar

49.

Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differential, synonymis, locis, Tomus I. Editio decima, reformata. Laurentiis Salvii, Holmiae.  DOI  Google Scholar

50.

Luz H.R., Silva-Santos E., Costa-Campos C.E., Acosta I., Martins T.F., Muñoz-Leal, S., … Labruna, M.B. 2018. Detection of Rickettsia spp. in ticks parasitizing toads (Rhinella marina) in the northern Brazilian Amazon. Experimental and Applied Acarology 75:309–318. Google Scholar

51.

Manzano R., Díaz V., Pérez, R. 2012. Garrapatas: características anatómicas, epidemiológicas y ciclo vital. Detalles de la influencia de las garrapatas sobre la producción y sanidad animal. Instituto de Recursos Naturales y Agrobiología de Salamanca. Available at:    http://www.produccion-animal.com.ar/sanidad_intoxicaciones_metabolicos/parasitarias/Bovinos_garrapatas_tristeza/160-garrapatas.pdfGoogle Scholar

52.

Martins T.F., Lado P., Labruna M.B., Venzal J.M. 2014. El género Amblyomma (Acari: Ixodidae) en Uruguay: especies, distribución, hospedadores, importancia sanitaria y claves para la determinación de adultos y ninfas. Revista Veterinaria Montevideo 51:26–41. Google Scholar

53.

Merchant M., Britton, A. 2006. Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 143:488–493.  DOI  Google Scholar

54.

Miranda J., Portillo A., Oteo J.A., Mattar S. 2012. Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae): a new proposed Rickettsia detected in Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. JournalofMedical Entomology 49:960–965.  DOI  Google Scholar

55.

Mora O. 2009. Caracterización de los principales hemoparásitos de cocodrilo (Crocodylus acutus y Crocodylus moreletii) en condiciones de cautiverio y vida libre en Yucatán, México. Tesis de licenciatura. Universidad Pedagógica y Tecnológica de Colombia, Colombia. Google Scholar

56.

Morais D.H., Strüssmann C., Carvalho V.T., Kawashita-Ribeiro R.A. 2010. First record of Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae) parasitizing Paleosuchus palpebrosus Cuvier, 1807 (Reptilia: Crocodylidae), in the western border of Pantanal, Mato Grosso do Sul, Brazil. Herpetology Notes 3:133. Google Scholar

57.

Neumann L.G. 1899. Révision de la famille des ixodidés (3°mémorire). Mémoires de la Société Zoologique de France 12:107–294. Google Scholar

58.

Oteo Revuelta J.A. 2016. Espectro de las enfermedades transmitidas por garrapatas. Pediatría Atención Primaria 18:47–51. Google Scholar

59.

Pallus P.S. 1772. Spicilegia Zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Fasciculus nonus. Gottl. August. Lange, Berolini.  DOI  Google Scholar

60.

Paz G.F., Ribeiro M.F.B., Michalsky É.M., da Rocha A.C.V.M., França-Silva J.C., Barata R.A., … Dias E.S. 2010. Evaluation of the vectorial capacity of Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis. Parasitology Research 106:523–528.  DOI  Google Scholar

61.

Peter T.F., Burridge M.J., Mahan S.M. 2002. Ehrlichia ruminantium infection (heartwater) in wild animals. Trends in Parasitology 18:214–218.  DOI  Google Scholar

62.

Peralta A.S.L., Amorim M., Gazeta G.S., Serra-Freire N.M. 1995. Jacaré coroa e iguana: dois novos hospedeiros para Amblyomma rotundatum no Parque do MPEG. P. 20, inAnonymous, Congresso da Sociedade de Zoológicos do Brasil 19. Anais da Sociedade de Zoológicos do Brasil, Foz do Iguaçu. Google Scholar

63.

Philip R.N., Casper E.A., Anacker R.L., Cory J., Hayes S.F., Burg- dorfer W., Yunker C.E. 1983. Rickettsia bellii sp. nov.: a tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. International Journal of Systematic and Evolutionary Microbiology 33:94–106.  DOI  Google Scholar

64.

Piana G.P., Galli-Valerio B. 1895. Su di un'infezione del cane con parassiti endoglobulari nel sangue. Nota Preventiva. Il Moderno Zooiatro 6:163–9. Google Scholar

65.

Pietzsch M., Quest R., Hillyard P.D., Medlock J.M., Leach S. 2006. Importation of exotic ticks into the United Kingdom via international trade in reptiles. Experimental & Applied Acarology 38:59–65.  DOI  Google Scholar

66.

Pizano C., García H. 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá D.C. Google Scholar

67.

Polanco-Echeverry D.N., Ríos-Osorio L.A. 2016. Aspectos biológicos y ecológicos de las garrapatas duras. Revista Corpoica Ciencia y Tecnología Agropecuaria 17:81–95.  DOI  Google Scholar

68.

Rainwater T.R., Platt S.G., Robbins R.G., McMurry S.T. 2001. Ticks from a Morelet's Crocodile in Belize. Journal of Wildlife Diseases 37:836–839.  DOI  Google Scholar

69.

Rodríguez-Vivas R.I., Apanaskevich D.A., Ojeda-Chi M.M., Trinidad-Martínez I., Reyes-Novelo E., Esteve-Gassent M.D., De León A.P. 2016. Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Veterinary parasitology 215:106–113.  DOI  Google Scholar

70.

Sanches G.S., Évora P.M., Mangold A.J., Jittapalapong S., Rodriguez-Mallon A., Guzmán P.E., … Camargo-Mathias M.I. 2016. Molecular, biological, and morphometric comparisons between different geographical populations of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). Veterinary Parasitology 215:78–87.  DOI  Google Scholar

71.

Santodomingo A., Cotes-Perdomo A., Foley J., Castro L.R. 2018. Rickettsial infection in ticks (Acari: Ixodidae) from reptiles in the Colombian Caribbean. Ticks and Tick-borne Diseases 9:623–628.  DOI  Google Scholar

72.

Schneider J.G. 1801. Historiae Amphibiorum naturalis et literariae. Fasciculus secundus continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias. Fried. Frommann, Jenae.  DOI  Google Scholar

73.

Schumaker T.T.S., Barros D.M. 1994. Notes on the biology of Amblyomma dissimile Kock, 1844 (Acari: Ixodida) on Bufo marinus (Linnaeus, 1758) from Brazil. Memórias do Instituto Oswaldo Cruz 89:29–31.  DOI  Google Scholar

74.

Schwetz J. 1927. Contribution à l'étude des Ixodidae (tiques) du Congo Belge. (d'après les collections du Musée Royal d'Histoire Naturelle de Bruxelles) (deuxiéme note) Revue de Zoologie Africaine 15:73–80. Google Scholar

75.

Scott J.D., Durden L.A. 2015. Amblyomma dissimile Koch (Acari: Ixodidae) parasitizes bird captured in Canada. Systematic and Applied Acarology 20:854–860.  DOI  Google Scholar

76.

Simser J.A., Palmer A.T., Fingerle V., Wilske B., Kurtti T.J., Munderloh U.G. 2002. Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Applied and Environmental Microbiology 68:4559–4566.  DOI  Google Scholar

77.

Siroski P.A., Piña C.I., Larriera A., Merchant M.E., Di Conza J. 2009. Plasma activity of the broad-snouted caiman (Caiman latirostris). Zoological Studies 48:238–242. Google Scholar

78.

Siroski P.A., Merchant M.E., Poletta G.L., Larriera A., Ortega H.H. 2013. Detection and characterization of Phospholipase A2 (PLA2) in Caiman latirostris and Caiman yacare plasma. Zoological Science 30:35–41.  DOI  Google Scholar

79.

Socolovschi C., Gaudart J., Bitam I., Huynh T.P., Raoult D., Parola P. 2012. Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Neglected Tropical Diseases 6:6.  DOI  Google Scholar

80.

Spix J.B.v. 1825. Animalia nova sive species novae lacertarum, quas in itinere per Brasiliam annis MDCCCXVII-MDCCCXX jussu et auspicius Maximiliani Josephi I Bavariae Regis. F.S. Hübschmanni, Monachii.  DOI  Google Scholar

81.

Szabó M.P.J., Pinter A., Labruna M.B. 2013. Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Frontiers in Cellular and Infection Microbiology 3:27.  DOI  Google Scholar

82.

Tellez M. 2014. A Checklist of Host–Parasite Interactions of the Order Crocodylia, Volume 136. University of California Press, Los Angeles. Google Scholar

83.

Voltzit O.V. 2007. A review of neotropical Amblyomma species (Acari: Ixodidae). Acarina 15:3–134. Google Scholar

84.

Wikel S.K. 1984. Immunomodulation of host responses to ectoparasite infestation an overview. Veterinary parasitology 14:321–339.  DOI  Google Scholar

85.

Witter R., Martins T.F., Campos A.K., Melo A.L., Corrêa S.H., Morgado T., Pacheco C. 2016. Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil. Ticks and Tick-borne Diseases 7:415–423.  DOI  Google Scholar

86.

Young H.S., Parker I.M., Gilbert G.S., Guerra A.S., Nunn, C.L. 2017. Introduced species, disease ecology, and biodiversity–disease relationships. Trends in Ecology & Evolution 32:41–54.  DOI  Google Scholar

87.

Zemtsova G., Killmaster L.F., Mumcuoglu K.Y., Levin M.L. 2010. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Experimental and Applied Acarology 52:383–392.  DOI  Google Scholar

88.

Zemtsova G.E., Apanaskevich D.A., Reeves W.K., Hahn M., Snellgrove A., Levin M.L. 2016. Phylogeography of Rhipicephalus sanguineus sensu lato and its relationships with climatic factors. Experimental and Applied Acarology 69:191–203  DOI  Google Scholar

89.

Zimmerman L.M., Vogel L.A., Bowden R.M. 2010. Understanding the vertebrate immune system: insights from the reptilian perspective. Journal of Experimental Biology 213:661–671.  DOI  Google Scholar
© 2020 Brazilian Society of Herpetology
Cristina Mora-Rivera, Fernando Suarez-Páez, Gualberto Pacheco-Sierra, Laura Vargas-Cuevas, and Mónica Padilla-Barreto "Tick Infection of Caiman crocodilus fuscus at the Hidroprado Hydroelectric Dam in Colombia: New Records, Parasite Prevalence, and Blood Loss Rate," South American Journal of Herpetology 16(1), 42-49, (31 August 2020). https://doi.org/10.2994/SAJH-D-18-00080.1
Received: 12 November 2018; Accepted: 25 May 2020; Published: 31 August 2020
KEYWORDS
Acari
Crocodylia
ectoparasites
Hard ticks
Ixodidae
parasitism
Back to Top