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Introduction

This appendix is intended to explain the statistical methods

employed in more detail and to further explore the different

models considered. The first section of the appendix deals

generally with the additive mixed models employed, the second

section explores the results from the freeze-thaw experiment, and

the final section discusses the solar radiation experiment results.

Statistical Models and Methods

In the experiments conducted, each bacterial strain of interest

is measured across repeated exposures (experimental treatments),

either exposure to solar radiation or freeze-thaw cycles, and over

the same period of time in the control group. A trial is defined as

the sequence of measurements of a strain under either treatment or

control conditions. Measurements for each trial depend upon

initial cell concentrations (although attempts were made to start

out with similar cell concentrations, cell numbers differed between

the treatment and control groups for the same strain as well as

between strains). Further, we assume that all measurements within

a trial are correlated. At each time point where a measurement is

taken, triplicate samples from a bacterial stock solution were

prepared to count colony forming units (CFUs). To account for

the repeated measures nature of the experiment and the different

initial concentrations for each individual, we use a mixed effect

model (Pinheiro and Bates, 2004) with a random effect for each

trial. Other repeated measures models could have also been

considered, but a random intercept models the source of similarity

within the trials. A random effect for each subject also induces a

correlation structure similar to compound symmetry. An addi-

tional advantage of using a random intercept is that estimates of

the initial concentrations for each trial are available. This

modeling framework allows comparison of different fixed effects

to address the research questions of interest regarding differences

due to pigmentation and control versus treatment groups, after

adjusting for the random, trial specific, starting concentrations. To

provide more normally distributed responses, all observations are

transformed using a log base 10 transformation, with 1 added to

all observations since observations range from 0 to 7.55e10.

RANDOM EFFECTS

All the models considered contain some combination of fixed

and random effects. The simplest model that contains a trial-

specific random effect but no group or time effects for the

response variable

Yijk~ log 10 CFUijkz1
� �

ðA1Þ

for trial i at exposure time j, and replicate k, is

Yijk~azbizeijk: ðA2Þ

The intercept, a, is the only fixed effect, suggesting no exposure

time, pigmentation, or treatment differences. The random

components of the model are a trial-specific random intercept

[bi , N(0,s2
b)] and the residual random variation of eijk , N(0,s2

e ).

Maximum likelihood estimation is used to estimate these variance

components as well as any additional fixed effects considered.

Restricted maximum likelihood estimation (REML) is not used

here since a model selection criterion is used to select across

different non-nested fixed effect structures, which is not possible in

a REML framework because those results are conditional on any

particular set of fixed effects. For a recent, accessible introduction

to mixed models see Zuur et al. (2009).

The random effect (bi) at the trial level is used for two reasons.

First, it allows for random variation in the initial CFUs at the

beginning of each trial. Every attempt was made to standardize the

starting concentrations, but it is not possible to make them exactly

equal. Allowing the starting point for each strain to be random

allows the fixed effects to consider the differences in the means over

exposure time after adjusting for this random starting point for each

individual trial. The second reason for the random intercept is that

it induces a slightly restricted version of a compound-symmetric

error structure. Compound-symmetric correlation is commonly

used with repeated measures data analyses as it provides a model

where all the measurements for a trial are equally correlated

regardless of when they were measured, and the measurements

across trials are modeled as being independent of one another.

The random intercept model restricts this correlation to be posi-

tive. These assumptions are justified based on the experimental

design.

For the UV exposure experiment, non-constant variance was

detected in the initial model diagnostics. In order to accommodate

this additional aspect of the data set, a different variance

coefficient was estimated for each of the four different exposure

levels. This is easily incorporated in the mixed model framework,

adding three additional parameters that must be estimated. For

the UV exposure results, models that assume equal variance are

directly compared to those with this particular variance structure.

FIXED EFFECTS

Fixed effects are used in the previous mixed model structure

to address differences based on pigmentation and estimate the
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mean log10-CFUs at each exposure time. Two different modeling

approaches were considered for the changes over exposure time,

either estimating a unique mean for each exposure time or

estimating a function of exposure time. In both cases, we consider

adjusting those effects based on grouping variables of interest such

as pigmentation or treatment and control groups (or the

interaction between them). We are generally interested in

differences in the response trajectories between the groups. Those

differences can take many different forms, from different linear

trends for each level to groups that change quickly initially and

then level off. For the freeze-thaw cycle experiment, one model

that could be considered is

Yijk~aYzbizbYCyclezeijk ðA3Þ

for the pigmented strains and

Yijk~aNzbizbNCyclezeijk ðA4Þ

for the non-pigmented strains. This has a fixed linear trend effect

for cycle that interacts with the pigmentation of the strains, but

ignores any treatment effects. A less restrictive fixed cycle effect

involves estimating a different parameter for each level of cycle for

the initial two level version of the pigmentation group,

Yijk~aYzbiztjYzeijk or Yijk~aNzbiztjNzeijk, ðA5Þ

where aY + tjY provides the mean at time j in the pigmented group.

With 12 different freeze-thaw cycle exposure times measured and

the random effect, this model requires estimation of 26 parame-

ters, whereas the linear trend model above uses only 6 parameters

since it exploits the quantitative aspect of the Cycle variable. The

estimates from the two models might be very similar, but the linear

trend model could be a more efficient parameterization, even with

both models demonstrating an important pigmentation effect. The

linear effect for Cycle might be too restrictive and the typical

repeated measures model with a unique value for each level of

Cycle may be overly complex. Additionally, when the control

group is also considered, this full model is not estimable since no

measurements were taken for cycle 1 in the control group because

no change was expected to occur in control group counts in that

time frame. More complicated functions of Cycle are also possible,

such as various orders of polynomials. We found the best results

using an alternative to polynomials using nonparametric functions

of exposure in the mixed models; however, some polynomial

models are also presented for comparison in the model selection

results.

Wood (2006) discussed methods for incorporating spline-

based smooth fixed effects in mixed models, such as those

discussed above, which are called additive mixed models (AMMs).

We use cubic regression splines, which are piecewise cubic

polynomials with continuity conditions imposed at ‘‘knots’’ where

the polynomials are joined. Increasing the number of knots

increases both the complexity and the degrees of freedom (df) of

the effect. A linear effect (1 df) is the simplest special case for the

regression spline; the previous model with a linear Cycle effect is a

possible result in our AMMs. Smooth effects in AMMs are

defined as s(x), such as s(Cycle), which would suggest a smooth

effect of Cycle in the model. While all s(x) fixed effects in each set

of models start with the same maximum complexity (described

through their df), their smoothness is estimated using additional

random effects (for more details see Wood [2006] or Zuur et al.

[2009]), resulting in penalized regression spline estimates of the

s(x)’s. The result of this method is that the effective degrees of

freedom (edf) are estimated for each s(x) in the model, with a lower

limit of 1 edf (linear) and an upper limit at the number of unique

points observed for x minus 1. It is possible to consider

interactions between smooth terms, s(x), and a categorical or

grouping variable, referred to as variable z. An interaction

between s(x) and z leads to a different s(x) for each level of z

and a different intercept for each level of the grouping variable as

well. We estimate models that consider different functions of

exposure and interactions with different groups based on

treatments and pigmentation as well as simplified versions of

these models to select a model(s) to interpret. All results in the

paper are generated using either the nlme (Pinheiro et al., 2009) or

mgcv (Wood, 2006) packages in R (R Development Core Team,

2009).

Both experiments contained grouping information based on

pigmentation information. Further, the freeze-thaw experiment

had different treatments: exposure to stresses or not (control). The

freeze-thaw experiment is discussed in detail in the section

‘‘Results for Freeze-Thaw Cycle Experiment’’ and the solar

radiation experiment in the section ‘‘Results for the Solar

Radiation Exposure Experiment.’’ In the solar radiation experi-

ment, fewer exposure time points were measured than in the

freeze-thaw cycle experiment so the differences between AMMs

and more conventional polynomial techniques are smaller.

Additionally, some more conventional models are actually

equivalent as, for example, there is no difference between using

the cubic polynomial model and the repeated measures model

since only 4 exposure times are considered.

The term ‘‘additive’’ can be used in two ways related to the

models considered here: (1) to describe the role of s(x) in the

AMM, and (2), more typically, to describe fixed effect terms in an

ANOVA-type model that describe a ‘‘mean shift’’ across the levels

of that factor, but that do not interact with any other terms in the

model. After adjusting for trial specific differences in the random

effect, we would expect all the groups to start at the same value for

an exposure of 0. This suggests that simple ANOVA additive

models that imply different intercepts for the levels and, for

example, the same function of exposure, are not of interest as

candidate models. We do not constrain all the models to have the

same intercept, as that can cause poor fit for models with different

slopes as a function of exposure, but also did not consider models

that only provided different intercepts for the different groups.

MODEL SELECTION

Generating accurate hypothesis tests in mixed models and

even more so in additive mixed models is a topic of much current

research and discussion (Wood [2006] and more recent documen-

tation related to the mgcv package). It is also useful only when

comparing nested models, which is not the case in either

experiment. For these reasons, we chose to use a model selection

criterion, the

AIC~{2 log likelihoodð Þz2p, ðA6Þ

originally developed in Akaike (1973), to compare models. We

define p as the number of parameters that must be estimated,

including the effective degrees of freedom from the additive

components when they are included in the model. Selecting the

model with the minimum AIC selects a model with the estimated

smallest expected prediction error across data that could be

obtained from the population in repeated samples like ours. It also

conforms with a version of the principle of parsimony. We report

DAICs, which are differences between the observed AICs and the

model with the smallest AIC. A difference of around 2 DAIC units

is sometimes suggested as a ‘‘large’’ difference between models;
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larger DAICs suggest more support for the top-ranked model

(Burnham and Anderson, 2002).

CONFIDENCE INTERVALS FOR

NONPARAMETRIC EFFECTS

The confidence regions for the mean log-CFU reported in

Figures 2, 3, and 4 in the main paper are approximate 95%

Bayesian confidence intervals. They are based on using the

Bayesian posterior covariance matrix for the parameters (Wood,

2006, p. 189). These are reported to perform better than the typical

frequentist intervals (even when interpreted as frequentist inter-

vals) so they are suggested as the default method for generating

confidence regions. The intervals are presented mainly to allow

visualization of the uncertainty in the estimation of the true mean

at different exposure times. They were not formally used to choose

amongst the models, but provide intervals for the likely value of

the mean as a function of exposure times for the groups

considered.

By re-parameterizing our models to contain an estimate for a

baseline category and deviations from it for each group, we can

estimate contrasts between groups as a function of exposure.

Wood (2006, p. 243) discussed the details of estimating the

difference between two groups in an additive mixed model. These

provide estimates (and CIs) for the difference between any two

groups of interest. In each experiment, we had a priori interests in

comparing the pigmented and non-pigmented strains in their

responses to the treatments. So in each experiment, we only had

one planned contrast and do not adjust our intervals in any way.

The estimated contrasts are displayed in Figure 4 in the main

paper.

Results for Freeze-Thaw Cycle Experiment

In this experiment, the cycle, pigmentation group, and

treatment were considered as fixed effects. We initially worked

with two categories for pigmentation, present or absent (labeled

Pigment2 in the models below). However, residual diagnostics

even for the top models were problematic when ANT 11 was

included with the remaining pigmented strains. Its behavior in the

treatment group (and to a lesser degree in the control group) is

completely different from all other strains considered in the study,

suggesting that it is an outlier with respect to its ‘‘group.’’ Instead

of deleting this unusual observation, we accommodated it by

creating a new group, creating three ‘‘pigmentation’’ categories:

absent, present (not ANT 11), and present (ANT 11), labeled

Pigment3 in results below. Note that ANT 11 does contain

pigmentation, but at much lower concentrations than other similar

carotenoids in the study. Combining the three pigmentation

groups with the two treatments, there are now six levels to the

combined possibilities for the overall grouping variables. The

residual diagnostics were dramatically improved by allowing ANT

11 to be its own pigmentation group. We do not focus on its

interpretation in as much detail as for the other groups, which

have three strains per group that seem to have similar responses to

the freeze-thaw exposure.

The favored model for the freeze-thaw experiment involved

different additive (smooth) components for the three pigmentation

groups and treatment/control levels (six different smooth func-

tions of the number of cycles). In Appendix Table A1, results for

17 different models are presented. The models involving different

orders of polynomial functions of Cycle are provided for

comparison for those who are more familiar with those methods.

The AMMs can provide very similar group estimates to

polynomial-based models but, as the results suggest here, provide

a more efficient (and easier) method of estimating the exposure

effects as they interact with different groupings of the strains. All

models considered the four- and six-level interactions between the

two versions of pigmentation (Pigment2 and Pigment3) and

treatment/control, since the four-level version was originally of

interest and the six-level version was identified through residual

diagnostics. Additionally, interactions between Cycle or s(Cycle)

and the pigmentation and treatment effects, but not both, were

also considered. Finally, removing each Cycle by group effect was

considered.

Based on the DAIC results in Appendix Table A1, the

difference between the AMM considering s(Cycle)*Pigment3*

Treatment and the next top model containing a sixth order

polynomial is reasonably large at 6 AIC units. This difference in

AICs is partially due to the 32 edf used in the AMM compared to

the 44 edf in the polynomial-based model. It may be possible to

TABLE A1

Model selection results for the freeze-thaw cycle experiment.

Model Log likelihood DF AIC* DAIC

s(Cycle)*Pigment3*Treatment 2356.78 32.33 778.21 0.00

Cycle6*Pigment3*Treatment 2348.12 44.00 784.24 6.03

Cycle5*Pigment3*Treatment 2359.33 38.00 794.66 16.45

Cycle5*Pigment3+Cycle5*Treatment 2474.51 26.00 1001.03 222.82

s(Cycle)*Pigment3+s(Cycle)*Treatment 2483.04 20.14 1006.36 228.15

Cycle*Pigment3*Treatment 2576.20 14.00 1180.40 402.19

Cycle*Pigment3+Cycle*Treatment 2589.46 10.00 1198.92 420.71

s(Cycle)*Pigment2*Treatment 2599.49 16.98 1232.94 454.73

s(Cycle)*Treatment 2606.04 12.63 1237.34 459.13

s(Cycle)*Pigment2+s(Cycle)*Treatment 2608.26 13.58 1243.68 465.47

factor(Cycle)*Pigment3 2621.34 38.00 1318.68 540.47

s(Cycle)*Pigment3 2649.85 13.32 1326.34 548.13

Cycle*Pigment2+Cycle*Treatment 2657.43 8.00 1330.87 552.66

Cycle*Pigment2*Treatment 2655.94 10.00 1331.88 553.67

factor(Cycle)*Pigment2 2697.85 26.00 1447.70 669.49

s(Cycle)*Pigment2 2714.84 9.72 1449.13 670.92

Constant mean 2740.23 3.00 1486.46 708.25

* AIC 5 Akaike’s Information Criterion.
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consider constraining some of the effects for the polynomial model

to lower dimensional polynomials to get performance closer to the

spline-based model; the ability of the AMM to provide linear and

other curving effects are highlighted in both the simplicity of

fitting this model and its performance relative to a polynomial-

based model with similar degrees of freedom (a quartic polynomial

model provides 32 df but is over 50 points worse on AIC). While

this is not a formal test to compare the models, the efficiency of

this model in characterizing the differences between the pigmented

and non-pigmented groups leads to overwhelming support for it

compared to the other models considered.

The favored AMM contained the following random effect

estimates: the random intercept was

bi*N 0,ŝs2
b~0:383

� �
ðA7Þ

and the residual random variation was

TABLE A2

Model selection results for the solar radiation experiment.

Model Variance Log likelihood DF AIC* DAIC

s(Exposure)*Pigment Unequal 266.65 8.21 149.74 0.00

Quadratic Exposure*Pigment Unequal 267.66 11.00 157.32 7.59

Cubic Exposure*Pigment Unequal 266.03 13.00 158.05 8.32

s(Exposure)*Pigment Equal 295.37 8.63 208.00 58.26

Cubic Exposure*Pigment Equal 295.00 10.00 210.01 60.27

Quadratic Exposure*Pigment Equal 297.10 8.00 210.20 60.46

Exposure*Pigment Unequal 2103.70 9.00 225.41 75.67

s(Exposure) Unequal 2114.03 5.20 238.46 88.73

Exposure Unequal 2116.74 7.00 247.48 97.74

Exposure*Pigment Equal 2119.31 6.00 250.62 100.89

s(Exposure) Equal 2129.66 5.14 269.60 119.86

Exposure Equal 2132.91 4.00 273.82 124.09

Constant mean Unequal 2159.00 6.00 330.00 180.26

Constant mean Equal 2191.06 3.00 388.12 238.39

* AIC 5 Akaike’s Information Criterion.

FIGURE A1. Residual diagnostic plots from the top model for the freeze-thaw experiment.
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eij*N 0,ŝs2
e ~0:260

� �
: ðA8Þ

This also provides an estimate of the within-trial correlation that is

induced in this model of

ŝs2
b=(ŝs2

bzŝs2
e )~0:60: ðA9Þ

This suggests that there is a strong dependency of the measure-

ments within the trials and that failing to account for this

correlation would lead to considerably different results. We did

not formally compare models with different random effects

structures, instead we used the design of the study to dictate this

component of the models. However, the size of this correlation is

suggestive of the importance of the random intercept effect in

these models. The fixed effects are displayed in Figure 2 in the

main paper; the non-pigmented control and treatment as well as

the ANT 11 treatment groups had between 5.6 and 6.7 edf, the

ANT 11 control group had 3.5 edf, and the treatment and control

pigmented groups (excluding ANT 11) were estimated to have

linear, 1 edf effects.

Appendix Figure A1 displays standardized residuals for the

top AMM. The first panel displays a nonparametric estimate of

the distribution of the residuals, the second panel plots those same

standardized residuals versus what would be expected from a

normal distribution, and the bottom panel displays the residuals

versus fitted values. The distribution of the residuals is relatively

symmetric although it is slightly heavier tailed than a normal

distribution. This can have some impact on the performance of the

inferential techniques, but these deviations are relatively minor

and the sample size is large enough that these minor differences

with a normal distribution should have little impact due to the

central limit theorem. The variance is relatively constant in the

bottom panel, and no systematic deviation of the residuals from

the estimated model is easily detected.

Results for the Solar Radiation Exposure Experiment

The solar radiation experiment differs from the freeze-thaw

experiment in two important ways: the measured number of

exposure times is much smaller, only 4 time points, and the control

observations are not considered in this analysis since we

demonstrated that all bacterial strains in the control group

increased in CFUs over a 24 hr period. The favored model here

is also an AMM with an interaction between a smooth function of

exposure time and pigmentation present/absent groups. Diagnos-

tics are more favorable here and do not suggest systematic

deviation for any strain from the others in its group, so we do not

separate ANT 11 from the other pigmented strains in the study.

But the diagnostics did suggest a problem with all the models,

demonstrating variability that was larger at the two middle

exposure times and smaller at the beginning and end time points.

To adjust for this, different variances were estimated for each

exposure time. The top model was

Yijk~aNzbizs timeð ÞNzeijk ðA10Þ

FIGURE A2. Residual diagnostic plots from the top model for the UV exposure experiment.
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for the non-pigmented strains, and

Yijk~aYzbizs timeð ÞYzeijk ðA11Þ

for the pigmented strains, with different variances for each

exposure time j. The edf for the non-pigmented and pigmented

time effects were 2.8 and 1.4, respectively. The random effect was

estimated to be

bi*N 0,ŝs2
b~0:117

� �
, ðA12Þ

and the residual random variation was

eij*N 0,ŝs2
e ~0:0035

� �
, ðA13Þ

which is the variance estimate for exposure time zero. The variance

at two hours of UV exposure was estimated to be 0.554, at six

hours of exposure, 1.73, and at 12 hours of exposure, 0.428. The

non-constant variance aspects of the model are also visible in the

plots of the estimated effects and the inferred precision at each

exposure time.

The second- and third-ranked models involve quadratic and

cubic polynomials that provide similar results to the favored

AMM, but use the model degrees of freedom less efficiently than

the AMM. Results only from the AMM are reported, but the

inference for the groups are similar with either method.

Residual diagnostic plots are displayed in Appendix Fig-

ure A2 for the top model. The distribution of the residuals is

slightly heavy tailed relative to a normal distribution, but the

deviation is relatively minor. There is also a negligible asymmetry

to the residual distribution with the negative residuals having a

slightly longer tail than for the higher values. The residual

diagnostics initially did point to a problem with unequal variances

that this model addresses. The structure of non-constant variance

is a little unusual, in that it increases as a function of the estimated

values and then decreases for the largest values, but was

accommodated using a different variance for each exposure level.

A small amount of changing variance is still visible in this plot that

was not accounted for by the model, but these results are much

better than for the models with constant variance.
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