Supplemental material

Table S1. Model-selection results for determining model structure for capture (*p*) and recapture (*c*) probabilities for a robust design analysis of grizzly bear (*Ursus arctos*) population size and temporary movements associated with the Elk Reduction Program in Grand Teton National Park, Wyoming, USA, 2014–2015. We fixed survival (*S*) between primary periods 3 and 4 (denning period and spring) to 0.979 and for all other transitions between primary periods to 1. We used time-variant temporary emigration parameters (γ_i, γ_i) for all models. Capture (*c*) and recapture (*p*) probabilities were modeled as time-variant across primary periods (*i*), year (*yr*), or constant (.); trap response (*p*, *c*) or no trap response (*p* = *c*); and an individual covariates for sex (*sex*).

			AIC _c		
Model number and description ^a	AICc ^b	∆ AIC c ^c	weight ^d	Ke	−2log(L)
1. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, <i>p</i> ., sex = <i>c</i> ., sex	319.72	0.00	0.44	11	293.32
2. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, p_{yr} , c_{yr}	320.03	0.31	0.38	13	287.75
3. S, $\gamma_i^{"}$, $\gamma_i^{'}$, p., c.	323.27	3.55	0.08	11	296.87
4. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, <i>p.</i> , sex, C., sex	324.13	4.41	0.05	13	291.85
5. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, $p_{yr} = c_{yr}$	324.72	5.00	0.04	11	298.32
6. S, $\gamma_i^{"}$, $\gamma_i^{'}$, pyr, sex, Cyr, sex	326.63	6.91	0.01	17	281.30
7. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, p_{i} , c.	333.19	13.47	0	16	291.29
8. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, p_{i} , c_{i}	343.86	24.14	0	21	283.38
7. S, $\gamma_{i}^{"}$, $\gamma_{i}^{'}$, p_{i} , c.	333.19	13.47	0	16	291.29

^a The parameters $\gamma_i^{"}$ and $\gamma_i^{'}$ reflect the probability of a bear being unavailable for detection in period *i* given that it was available or unavailable, respectively, in the previous period.

^b Akaike's Information Criterion adjusted for small sample size.

^c Difference in AIC_c compared with lowest AIC_c model.

^d AIC_c model weight.

^e No. of model parameters.