SUPPLEMENTAL MATERIAL

Biparental Care in a Generalist Raptor, the Chimango Caracara in Central Argentina

Diego Gallego, 12* Mikel Larrea,¹ Claudina Solaro, 12, and José Hernán Sarasola

¹Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Avda. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina

²Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 109, 6300 Santa Rosa, La Pampa, Argentina

³Colaboratorio de Biodiversidad, Ecología y Conservación (ColBEC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Avda. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina **Table S1.** Number of hours Chimango Caracara nests were observed during the breeding season in 2016 and 2017, by reproductive period (incubation and nestling) and by time of the day: morning (0600–1059 H), midday (1100–1459 H) and afternoon (1500–2100 H). For each period and time block, shown are total hours of observation, mean number of hours per nest \pm SE, and n (number of nests).

		Donroductivo	Morning	Midday	Afternoon		
Year	n	Period	Observation	Observation	Observation	Total	
			Hours	Hours	Hours		
		Incubation	22	18	22	62	
			(4.40 ± 0.25)	(4.50 ± 0.29)	(4.40 ± 0.40)	(4.43 ± 0.17)	
2016	30		n = 5	n = 4	n = 5	n = 14	
2010	50		22	23	27	72	
		Nestling	(4.40 ± 0.40)	(4.60 ± 0.25)	(4.50 ± 0.34)	(4.44 ± 0.18)	
			n = 5	n = 5	n = 6	n = 16	
			30	28	28	86	
		Incubation	(4.29 ± 0.18)	(4.67 ± 0.42)	(4.67 ± 0.33)	(4.53 ± 0.18)	
2017	40		n = 7	n = 6	n = 6	n = 19	
2017	-10		25	34	36	95	
		Nestling	(4.17 ± 0.17)	(4.86 ± 0.34)	(4.50 ± 0.19)	(4.52 ± 0.15)	
			n = 6	n = 7	n = 8	n = 21	
			00	103	113	315	
Total	70	Both	77 n - 22	$\frac{103}{n-22}$	n = 25	(4.50 ± 0.09)	
			$\mathbf{n} = 23$	$\mathbf{n}=22$	$\mathbf{H}=25$	n = 70	

Table S2. Model selection results of GLMM explaining the percent of time adult Chimango Caracaras (*Milvago chimango*) spent incubating at nests in a suburban residential area in La Pampa Province, Argentina (n = 30 nests in 2016, 40 nests in 2017). Only the four top models are shown. Sex = male, female, TOD = Time of day (Morning, Midday, Afternoon), Clutch size = number of eggs. Nest identity and year were used as random variables in all models.

ID	Variables	k	AICc	ΔAICc	W
1	Sex + TOD	7	237.9	0	0.651
2	Sex	5	240.3	2.35	0.197
3	Sex + Clutch size	6	242.5	4.64	0.065
4	Sex + TOD + Clutch size	8	245.0	7.09	0.019
Full	Sex*TOD + Clutch size	9	256.2	9.34	0.008

Table S3. Model selection results of GLMM explaining the percent of time adult Chimango Caracaras (*Milvago chimango*) spent brooding/shading nestlings at nests in a suburban residential area in La Pampa Province, Argentina (n = 30 nests in 2016, 40 nests in 2017). Only the four top models are shown. Sex = male, female, TOD = Time of day (Morning, Midday, Afternoon), Brood size = number of chicks, Nestling age = number of days posthatching. Nest identity and year were used as random variables in all models.

ID	Variables	k	AICc	ΔAICc	W
1	Sex + TOD + Nestling age	8	138.5	0	0.322
2	Sex + TOD + Brood size + Nestling age	9	141.0	2.55	0.137
3	Sex + TOD + Sex*TOD	9	143.2	4.73	0.098
4	Sex + TOD + Year	8	144.3	5.80	0.071
Full	Sex*TOD + Brood size + Nestling Age	10	151.2	8.15	0.022

Table S4. Model selection results of GLMM explaining food delivery rates by adult Chimango Caracaras (*Milvago chimango*) at nests in a suburban residential area in La Pampa Province, Argentina (n = 30 nests in 2016, 40 nests in 2017). Only the four top models are shown. Sex = male, female, TOD = Time of day (Morning, Midday, Afternoon), Brood size = Number of chicks, Nestling age = number of days post hatching. Nest identity and year were used as random variables in all models.

ID	Variables	k	AICc	ΔAICc	W
1	$TOD + Nestling Age + Nestling Age^2$	7	311.3	0	0.216
2	$TOD + Year + Nestling Age + Nestling Age^2$	8	313.5	2.21	0.049
3	TOD + Brood size + Nestling Age	7	313.6	2.31	0.047
4	Sex + TOD + Nestling Age + Nestling Age ²	9	313.9	2.69	0.039
Full	$Sex*TOD + Brood size + Nestling Age + Nestling Age^{2}$	11	316.6	4.01	0.017

Table S5. Model selection results of GLMM explaining nest success at Chimango Caracara (*Milvago chimango*) nests in a suburban residential area in La Pampa Province, Argentina. Analysis used nests observed only during the nestling period. Only the three top- models are shown. Brooding = total percent of time spent brooding or shading, males and females combined; Food_deliv = food delivery rate (number of food deliveries per hour during the nestling period, males and females combined); Julian = number of days after first recorded hatching in each year. Nest identity and year were used as random variables in all models.

Nests observed only during the nestling period $(n = 37)$		k	AICc	ΔAICc	W
1	Food_deliv	3	53.3	0.00	0.698
2	Food_deliv + Julian	4	55.7	2.41	0.209
Full	Brooding + Food_deliv + Julian	5	57.9	4.60	0.070

Table S6. Model selection results of GLMM explaining nest productivity at Chimango Caracara (*Milvago chimango*) nests in a suburban residential area in La Pampa Province, Argentina. Analysis used nests observed only during the nestling period. Only the three top models are shown. Brooding = Total percent time spent brooding or shading, males and females combined; Food_deliv = food delivery rate (number of food deliveries per hour during nestling period, males and females combined); Julian = number of days after first recorded hatching each year. Nest identity and year were used as random variables in all models.

Nests observed only during the nestling period $(n = 37)$		k	AICc	ΔAICc	W
1	Food_deliv	3	92.2	0.00	0.285
2	Food_deliv + Julian	4	94.6	2.39	0.096
Full	Brooding + Food_deliv + Julian	5	95.1	2.88	0.081