Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither BioOne nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the BioOne website.
1 July 2003PHYLOGEOGRAPHY OF CANADA GEESE (BRANTA CANADENSIS) IN WESTERN NORTH AMERICA
Kim T. Scribner,Sandra L. Talbot,John M. Pearce,Barbara J. Pierson,Karen S. Bollinger,Dirk V. Derksen Alaska Science Center, U.S. Geological Survey, 1011 East Tudor Road, Anchorage, Alaska 99503, USA
Using molecular genetic markers that differ in mode of inheritance and rate of evolution, we examined levels and partitioning of genetic variation for seven nominal subspecies (11 breeding populations) of Canada Geese (Branta canadensis) in western North America. Gene trees constructed from mtDNA control region sequence data show that subspecies of Canada Geese do not have distinct mtDNA. Large and small-bodied forms of Canada Geese were highly diverged (0.077 average sequence divergence) and represent monophyletic groups. A majority (65%) of 20 haplotypes resolved were observed in single breeding locales. However, within both large and small-bodied forms certain haplotypes occurred across multiple subspecies. Population trees for both nuclear (microsatellites) and mitochondrial markers were generally concordant and provide resolution of population and subspecific relationships indicating incomplete lineage sorting. All populations and subspecies were genetically diverged, but to varying degrees. Analyses of molecular variance, nested-clade and coalescencebased analyses of mtDNA suggest that both historical (past fragmentation) and contemporary forces have been important in shaping current spatial genetic distributions. Gene flow appears to be ongoing though at different rates, even among currently recognized subspecies. The efficacy of current subspecific taxonomy is discussed in light of hypothesized historical vicariance and current demographic trends of management and conservation concern.
"PHYLOGEOGRAPHY OF CANADA GEESE (BRANTA CANADENSIS) IN WESTERN NORTH AMERICA," 120(3) Kim T. Scribner, Sandra L. Talbot, John M. Pearce, Barbara J. Pierson, Karen S. Bollinger, Dirk V. Derksen The Auk (1 July 2003)