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ABSTRACT
Understanding spatial connectivity of long-distance migrants is important for effective management and conservation
of both game and nongame species. Hunting of Nearctic-breeding shorebirds occurs in the Caribbean and northern
South America; however, the origins of harvested individuals are generally unknown. We used stable hydrogen
isotopes (d2H) in feathers of juvenile shorebirds to infer the origins of birds harvested at 2 sites in Barbados using
probabilistic assignments based on a terrestrial–freshwater d2H isoscape. We used tissue d13C and d15N values to filter
individuals that had derived nutrients from marine sources. Natal origins of juvenile American Golden-Plover (Pluvialis
dominica), Stilt Sandpiper (Calidris himantopus), Short-billed Dowitcher (Limnodromus griseus), and Lesser Yellowlegs
(Tringa flavipes) were predicted to be mainly from the eastern parts of their breeding ranges in eastern Canada, with
American Golden-Plover, Stilt Sandpiper, and Short-billed Dowitcher also having high potential areas of origin in parts
of Alaska, USA. Results from our study should help to modify prior estimates of sustainable harvest levels for these
species. We identify sources of uncertainty in determining shorebird origins using stable isotopes, including a lack of
shorebird-specific calibration equations and the apparent lack of an appropriate tissue for breeding ground
assignment for adults.

Keywords: carbon-13, deuterium, harvested species, fall migration, migratory connectivity, nitrogen-15,
shorebirds, stable isotopes

Chasse aux limicoles à la Barbade : utilisation d’isotopes stables pour relier la récolte sur une halte
migratoires à des sources de production

RÉSUMÉ
Comprendre la connectivité spatiale des migrateurs est important pour assurer une gestion et une conservation
efficaces des espèces gibiers et non gibiers. Une chasse aux limicoles nichant dans le Néarctique a lieu dans les
Caraı̈bes et le nord de l’Amérique du Sud mais l’origine des individus récoltés est généralement inconnue. Nous avons
utilisé des isotopes stables de l’hydrogène (d2H) dans les plumes de limicoles juvéniles afin d’inférer les origines des
oiseaux récoltés sur deux sites de la Barbade à l’aide d’affectations probabilistes basées sur un paysage isotopique
terrestre/d’eau douce de d2H. Nous avons utilisé des valeurs de d13C et d15N provenant des tissus pour filtrer les
individus tirant leurs nutriments de sources marines. Selon les prédictions, les juvéniles de Pluvialis dominica, Tringa
flavipes, Limnodromus griseus et Calidris himantopus étaient originaires principalement des parties est de leurs aires de
nidification dans l’est du Canada, alors que P. dominica, C. himantopus et L. griseus avaient également des aires
d’origine potentielles dans certaines parties de l’Alaska. Les résultats de notre étude devraient permettre de modifier
les estimations antérieures de niveaux de récolte durables pour ces espèces. Nous identifions les sources d’incertitude
dans la détermination des origines des limicoles à l’aide des isotopes stables, dont l’absence d’équations de calibration
propres aux limicoles et l’absence apparente d’un tissu approprié pour l’affectation des aires de nidification pour les
adultes.

Mots-clés : carbone 13, deutérium, espèce récoltée, migration automnale, connectivité migratoire, azote 15,
limicoles, isotopes stables

INTRODUCTION

Connecting breeding, staging, and wintering sites of long-

distance migratory birds is important due to clear

implications for effective conservation and management

of species over their full life cycle (Webster et al. 2002,

Hobson 2005, Brown et al. 2017). For hunted migratory

birds, harvest can occur across many jurisdictions; thus,
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optimal conservation strategies require knowledge of

migratory connectivity as well as the coordination of

regulations and policies among jurisdictions (Klaassen et

al. 2008, Hobson et al. 2009a, Marra et al. 2011).

Shorebirds are among the groups of highest conservation

concern in the world (IWSG 2003, Piersma 2007), with 3

times as many species declining as increasing (Wetlands

International 2006, Nebel et al. 2008). Substantial popu-

lation declines have been reported in 65% of the Nearctic-

breeding shorebird species that migrate via the Atlantic

Flyway (Bart et al. 2007, Andres et al. 2012). Although the

proximate causes of these declines are poorly understood

for most species, harvest along migration routes and on

the wintering grounds has emerged as a threat or potential

contributing factor in shorebird declines worldwide

(Zöckler et al. 2010, Morrison et al. 2012, Watts et al.

2015, Pearce-Higgins et al. 2017). In the Americas,

shorebird harvest occurs in several countries and may

negatively affect shorebird populations in the Western

Atlantic Flyway (e.g., Hutt 1991, Vermeer and Castilla
1991, Canevari and Blanco 1994, Ottema and Spaans 2008,

Burke 2009).

Protection of migratory birds and associated legislation,

including hunting regulations, vary widely across the
Americas (Bayney and Da Silva 2005, Watts and Turrin

2016), complicating efforts to manage these species. The

bulk of the harvest of Nearctic-bred shorebirds is thought

to occur in the Caribbean and northern regions of South

America. For instance, the annual shorebird harvest in

Barbados ranges from 12,000 to 35,000 birds (Hutt 1991, E.

T. Reed personal observation), and harvest levels are

suspected to be similar in several other countries (Andres

2011). Furthermore, a recent evaluation of the harvest in

Barbados showed that 18 species were recorded in hunting

logs, with 6 species making up ~98% of the harvest: Lesser

Yellowlegs (Tringa flavipes; 54–67% of the harvest),

Pectoral Sandpiper (Calidris melanotos; 11–23%), Stilt

Sandpiper (Calidris himantopus; 6–8%), Short-billed

Dowitcher (Limnodromus griseus; 4–11%), Greater Yel-

lowlegs (Tringa melanoleuca; 3–7%), and American

Golden-Plover (Pluvialis dominica; 1–6%; Wege et al.

2014). Although the harvest levels of these species in

Barbados are apparently within continental-scale sustain-

able limits (Watts et al. 2015), their overall hemispheric

harvest is unknown and could negatively affect some

populations (Hutt 1991, Clay et al. 2010).

Determining the source populations of individuals

hunted at nonbreeding sites is challenging for species

such as shorebirds that have broad breeding distributions

and occur at low densities, often in remote northern

locations. Migratory movements of shorebirds in North

America have been studied primarily through banding

programs and remote tracking approaches such as satellite

and VHF telemetry or light-sensing geolocators (e.g.,

Warnock and Takekawa 2003, Dunn et al. 2010, Niles et

al. 2010, Brown et al. 2017). Band return data are of limited

value because capture and marking of a sufficient sample

of birds is daunting and, to date, have produced low

returns (Hobson 2003, Dunn et al. 2010; but see Lanctot et

al. 2009). Exogenous markers such as satellite telemetry

transmitters and archival tags such as geolocators suffer

from similar issues: it is challenging to equip a represen-

tative sample of the population and/or to recapture a

sufficient number of individuals due to potentially low

return rates (Hobson et al. 2014, Weiser et al. 2016),

particularly at stopover sites where individuals may stay for

only a few days or hours.

Intrinsic biogeochemical markers such as stable isotopes

have become particularly useful tools for understanding

migratory connectivity (Rubenstein and Hobson 2004,

Hobson and Wassenaar 2008) as well as for determining

the origins of harvested birds (Hebert and Wassenaar 2005,

Asante et al. 2017). For instance, in North America, the

average abundance of deuterium in amount-weighted

precipitation (d2Hp) follows well-described, continent-

wide patterns (Bowen et al. 2005). Local deuterium is

incorporated into food webs, allowing the creation of

continent-wide, tissue-dependent ‘‘isoscapes’’ that can be
used to assign individuals to approximate regions of origin

(Wunder et al. 2005, Hobson et al. 2014). The application

of stable isotopes to determining the origins of migratory

animals can target the segment of the population exposed

to harvest and has been used effectively to describe the

origins of many migratory species, including shorebirds

(Atkinson et al. 2005, Catry et al. 2012, 2016, Franks et al.

2012). However, their application has been limited to only

a few species and populations, and most studies have not

used probabilistic models to determine likely areas of

origin.

The objective of this study was to use stable-hydrogen

(d2Hf) measurements of feathers to delineate the probable

natal origins of 4 shorebird species (American Golden-

Plover, Stilt Sandpiper, Short-billed Dowitcher, and Lesser

Yellowlegs) harvested in Barbados. Feathers, which are

grown on breeding sites by juveniles but not by adults

(Pyle 2008), are faithful indicators of the location where

they were developed. Limited information on connectivity

is available for most Arctic-breeding shorebird species (but

see Lanctot et al. 2016, Brown et al. 2017); however, we

developed hypotheses based on flyway population delin-

eations for other shorebird species (BirdLife International

and NatureServe 2015, J.-F. Lamarre personal communi-

cation). We expected that most birds and species harvested

at migratory stopover sites in Barbados would originate

from the eastern parts of their ranges in northeastern

North America. However, we expected that a portion of

American Golden-Plover samples might also originate

from the Alaskan, USA, part of their range, based on
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recent results from geolocators (Johnson et al. 2018, J.-F.

Lamarre personal communication, https://doi.org/10.

13140/RG.2.2.20167.60329). Given that nesting phenology

tends to be later at higher latitudes (Klima and Jehl 2012,

Johnson et al. 2018), we predicted that d2Hf values would

decrease with the date of harvest, indicating that birds that

arrive earlier in Barbados during fall migration originate

from more southerly natal areas. Similarly, we predicted

that feather carbon (d13Cf ) and nitrogen (d15Nf) isotope

values, which can be used to identify marine-derived

resource use (Hobson 1999, Cross et al. 2014, Hobson and

Kardynal 2016), would decrease with harvest date for

Short-billed Dowitcher and Lesser Yellowlegs, indicating

that birds that originate from marine-influenced areas

(potentially more abundant in the southern part of these

species’ ranges in coastal areas of James and Hudson bays,

Canada) arrive before more northern birds, reflecting a

chain migration. Marine isotopic values typically derive

from individuals foraging in coastal areas (e.g., mudflats

and wetlands); however, aerosolic transport (i.e. sea spray)

can also affect inland (~100 km) continental regions

(Zazzo et al. 2011, Hobson and Kardynal 2016). Therefore,

we used d13Cf and d15Nf values as filters to remove birds

with feather growth potentially influenced by marine

resources, which provides unreliable assessment of natal

origins using terrestrial patterns of d2H (Hobson and

Wassenaar 2008).

METHODS

Species and Study Area
We conducted this study in Barbados (138100N, 598330W),

one of the nearest potential migratory stopover sites in the

Caribbean for shorebirds using the southbound trans-

Atlantic migration route from the North American

Atlantic coast to South America (Williams 1985). Fall

passage of migrants through Barbados is typically of short

duration, with most birds spending only a few hours on

site. In Barbados, only 4 shorebird species are protected

from hunting under the Barbados Wild Birds Protection

Act of 1907, 1985: Upland Sandpiper (Bartramia long-

icauda), Hudsonian Godwit (Limosa haemastica), Ruff

(Philomachus pugnax), and Buff-breasted Sandpiper (Cal-

idris subruficollis). All other shorebird species are there-

fore unprotected during a traditional July 15 to October 15

shorebird hunting season (Watts and Turrin 2016).

Shorebird hunting in Barbados occurs only at private

hunting clubs known locally as shooting swamps. These

areas are composed of a series of diked impoundments

that are mechanically prepared and flooded to attract

migrating shorebirds to a landscape mainly devoid of

natural wetlands (Jackman 1901, Hutt 1991). Daily and

seasonal bag limits are not regulated by the government

but by the Barbados Wildfowlers Association, which

represents shorebird hunters in Barbados and sets bag

limits and rules for hunting that are voted on by members.

Individual shooting swamps can implement stricter bag

limits and rules than those agreed upon by theWildfowlers

Association. There were 8 shooting swamps active in 2013

and 2014 (Wege et al. 2014). Two shooting swamps

provided samples for this study: Fosters, in the Parish of St.

Lucy, and Tom’s Pond, in St. Philip Parish (Figure 1).

We collected one wing from all birds harvested:

American Golden-Plover and Lesser Yellowlegs were

collected in 2013, and Stilt Sandpiper, Short-billed

Dowitcher, and Lesser Yellowlegs were collected in 2014

(Table 1). Each wing was identified to species and age

(juvenile or adult) based on plumage characteristics (Jehl

et al. 2001, Pyle 2008). We divided the hunting season into

13 7-day periods from July 15 to October 15, and in each

period randomly selected up to 20 juvenile birds of each

species for isotopic analysis (Table 1). When ,20 birds of a

given species were available during a period, all individuals

were selected for analysis. In the case of American Golden-

Plover, Stilt Sandpiper, and Short-billed Dowitcher, we

wanted to maximize the overall sample size and thus

FIGURE 1. Location of the study area where we investigated the
natal origins of harvested shorebirds. Wings and claws of
harvested shorebirds were collected at Fosters and Tom’s Pond
shooting swamps, Barbados, in July–October of 2013 and 2014.
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selected all birds for which we had wings. Some periods

contained few or no samples of certain species or age

groups as they occurred outside the migratory passage

period of those assemblages. The tip (2 cm) of the 10th

primary feather was cut from all randomly selected

juvenile samples in both years of the study and used for

stable isotope analysis. We also collected claw samples

from harvested adult American Golden-Plovers and Lesser

Yellowlegs to determine whether this tissue could be used

to assign adults to areas of breeding origin; however, claws

were grown during migration and thus integrated resourc-

es from across a broad geographic area (Appendix Figure

4).

Stable Isotope Analysis
All feathers were cleaned of surface oils in 2:1 chlor-

oform:methanol solvent rinse and prepared for d2H, d13C,
and d15N analysis at the Stable Isotope Laboratory of

Environment and Climate Change Canada (Saskatoon,

Saskatchewan, Canada). The d2H of the nonexchangeable

hydrogen of feathers was determined using the method

described by Wassenaar and Hobson (2003), based on 2

calibrated keratin hydrogen isotope reference materials

(CBS (caribou hoof standard): �197%; KHS (kudu horn

standard): �54.1%). Hydrogen isotopic measurements

were performed on H2 gas derived from high-temperature

(1,3508C) flash pyrolysis (Eurovector 3000, Milan, Italy) of

350 6 10 lg feather subsamples and keratin standards

loaded into silver capsules. Resultant separated H2 was

analyzed on an interfaced Isoprime (Crewe, UK) contin-

uous-flow isotope-ratio mass spectrometer. Measurements

of the 2 keratin laboratory reference materials corrected

for linear instrumental drift were both accurate and precise

with typical within-run SD (n¼ 5) of ,2%. All results are

reported for nonexchangeable H expressed in typical delta

notation, in parts per mil (%), and normalized on the

Vienna Standard Mean Ocean Water–Standard Light

Antarctic Precipitation (VSMOW–SLAP) standard scale.

For d13C and d15N analyses, between 0.5 and 1.0 mg of

feather was combusted and CO2 and N2 separated online

using a Eurovector 3000 elemental analyzer interfaced with

a Nu Horizon (Nu Instruments, Wrexham, UK) triple-

collector isotope-ratio mass spectrometer via an open split

and compared with a pure CO2 or N2 reference gas. Stable

nitrogen (15N/14N) and carbon (13C/12C) isotope ratios

were expressed in delta (d) notation as parts per mil (%)

deviation from the primary standards of atmospheric

nitrogen and Vienna Pee Dee Belemnite carbonate (VPDB)

standards, respectively. Using previously calibrated inter-

nal laboratory C and N standards (powdered keratin and

gelatin), within runs (n ¼ 7), precision for d13C and d15N
was better than 60.15%.

Statistical Analysis and Assignment to Origin
We used multivariate analysis of variance (MANOVA)

with Pillai’s trace statistic to test for differences in feather

isotope (d2Hf, d
13Cf, d

15Nf) composition by year of harvest

in juvenile Lesser Yellowlegs; no other species was

collected in both years. The F-statistic provided in the

MANOVA results is the ‘‘approximate’’ value. Changes in

feather isotope values were tested against the ordinal date

of harvest using multivariate regression for the 3 isotopes

combined and using univariate regression for individual

isotopes. These analyses were conducted to determine

TABLE 1. Number of wings collected from juvenile American Golden-Plover (AMGP), Stilt Sandpiper (STSA), Short-billed Dowitcher
(SBDO), and Lesser Yellowlegs (LEYE) at 2 shooting swamps in Barbados 2013 and 2014, and number of individuals (i.e. feathers)
randomly sampled for data analysis by species and by week of the hunting season. Assignment to natal origin was made using the
filtered dataset, wherein individuals with marine-influenced isotope values (d13Cf .�20% and d15Nf .10%) or enriched in 2H (d2H
within 2 standard deviations greater than �69.8%) were removed. The hunting season ran from July 15 to October 15.

Species Year Sample

Week

Total1 2 3 4 5 6 7 8 9 10 11 12 13

AMGP 2013 Wing 0 0 0 0 0 0 0 4 1 0 4 5 1 15
Feather 0 0 0 0 0 0 0 4 1 0 4 5 1 15
Filtered 0 0 0 0 0 0 0 0 0 0 1 5 1 7

STSA 2014 Wing 0 0 0 0 2 0 3 7 0 7 4 0 0 23
Feather 0 0 0 0 2 0 3 7 0 7 4 0 0 23
Filtered 0 0 0 0 2 0 1 2 0 5 3 0 0 13

SBDO 2014 Wing 0 0 0 0 0 19 39 34 13 10 0 0 0 115
Feather 0 0 0 0 0 19 39 34 13 9 0 0 0 114
Filtered 0 0 0 0 0 17 30 33 13 9 0 0 0 102

LEYE 2013 Wing 0 0 0 0 0 23 79 132 99 45 44 27 14 463
Feather 0 0 0 0 0 20 20 20 20 21 19 20 13 153
Filtered 0 0 0 0 0 13 14 18 19 17 16 19 12 128

LEYE 2014 Wing 0 1 11 54 28 20 34 125 14 170 86 75 34 652
Feather 0 1 11 20 20 20 20 20 14 20 20 20 20 206
Filtered 0 0 0 0 2 15 18 10 12 16 18 18 18 127

The Condor: Ornithological Applications 120:357–370, Q 2018 American Ornithological Society

360 Origins of shorebirds harvested in Barbados E. T. Reed, K. J. Kardynal, J. A. Horrocks, and K. A. Hobson

Downloaded From: https://bioone.org/journals/The-Condor on 01 Mar 2025
Terms of Use: https://bioone.org/terms-of-use



whether individuals from different geographic areas, as

represented by isotopic composition, migrated through

Barbados at different times. The predicted relationship

between d2Hp and d2Hf breaks down in food webs

influenced by marine-derived nutrients; however, we

retained all data for the regression analyses since they

may still provide insight into the timing of migration of

individuals from disparate coastal (i.e. influenced by

nutrients of marine origin) and inland areas. For instance,

we would expect Lesser Yellowlegs with natal origins in

southern breeding areas and near Hudson Bay to arrive

earlier in Barbados than those that bred in northern areas

and adjacent to the Beaufort Sea.

However, probabilistic assignments using individuals

with marine-influenced isotope values do not provide

accurate depictions of potential geographic origins for

those individuals (Yerkes et al. 2008, Ashley et al. 2010,

Hobson and Kardynal 2016). Therefore, we filtered our

dataset based on d13Cf and d15Nf values and assumed that

samples with d13Cf .�20% and d15Nf .10% had marine

influence (Peterson et al. 1985, Kelly 2000); these

individuals were removed from all further analyses of

assignment to origin. Even after filtering, some juvenile

Lesser Yellowlegs with 2H-enriched feathers could not be
placed in feather terrestrial isoscapes. Therefore, we

removed individuals with d2Hf within 2 standard devia-

tions greater than the highest value in the calibrated

feather isoscape (�69.8%; see below). Results of statistical

tests were considered significant at P , 0.05 and slope

coefficients (61 SE) are provided for regressions.

To delineate the probable natal origins of juvenile

shorebirds, we applied a spatially explicit likelihood

assignment method (Royle and Rubenstein 2004, Hobson

et al. 2009b) to each species separately. First, we converted

an amount-weighted growing season precipitation surface

from Bowen et al. (2005) to a feather isoscape using the

calibration equation for juvenile Lesser Scaup (Aythya

affinis; d2Hf ¼�27.88 þ 0.95*d2Hp; Hobson et al. 2009b)

because we lacked similar species- or guild-specific

equations for shorebirds. Similarly to many shorebird

species, Lesser Scaup forage on aquatic inverterbrates, and

thus represented the most appropriate available calibration

equation. The standard deviation of the residuals of the

linear regression model (SD¼ 12.6%) from the calibration

of the Lesser Scaup feather isoscape was incorporated into

the origin assignments as an estimate of error (Hobson et

al. 2009b). We used digital range maps obtained from

BirdLife International and NatureServe (2015) to delineate

known breeding areas for all 4 species; breeding ranges for

American Golden-Plover in northern Quebec, Canada,

and Stilt Sandpiper in eastern Nunavut and western

Northwest Territories, Canada, were modified based on

secondary sources (Québec Breeding Bird Atlas: http://

www.atlas-oiseaux.qc.ca/index_en.jsp, Andres 2006) and

other regional surveys (Andres 2006). The calibrated

feather isoscape was then restricted (‘‘clipped’’) to the

resulting breeding range maps for use in species-specific

origin assignments of juvenile birds.

Similarly to Hobson et al. (2009b), we used an odds ratio

of 2:1 to assign individuals to their potential natal origin,

where cells in the isoscape in the upper 67% of

probabilities were considered likely (1) origins and all

others were considered unlikely (0). Assignments con-

ducted for feather samples resulted in a spatially explicit

binary surface for each individual; surfaces were summed

across assignments for all individuals of a species to

represent potential origins for that species. Manipulation

of digital files and assignment to origin analyses were

conducted using multiple packages, including raster 2.5-8

(Hijmans 2016), maptools 0.8-39 (Bivand and Lewin-Koh

2016), and permute 0.9-4 (Simpson 2016), in the R 3.3.2

statistical computing environment (R Core Team 2016)

and ArcMap 10.1 (ESRI, Redlands, California, USA).

RESULTS

Tissue samples that could be aged accurately were

collected from 1,359 harvested birds in 2013 and 2,110

birds in 2014. Lesser Yellowlegs was the most numerous
species in each year. The proportion of juvenile birds in the

harvest was variable across species: it was high for Short-

billed Dowitcher (59% of juveniles in the harvest, n¼ 196

individuals harvested and collected), moderate for Lesser

Yellowlegs (42%, n ¼ 2,643), and low for Stilt Sandpiper

(8%, n¼ 291) and American Golden-Plover (5%, n¼ 329).

Adults tended to be harvested earlier in the season than

juveniles for all species. The range of harvest dates was:

July 22–October 8 (adults) and September 8–October 8

(juveniles) for American Golden-Plover; July 18–Septem-

ber 18 (adults) and August 16–September 27 (juveniles)

for Stilt Sandpiper; July 22–September 3 (adults) and

August 24–September 20 (juveniles) for Short-billed

Dowitcher; and July 15–October 10 (adults) and July 26–

October 10 (juveniles) for Lesser Yellowlegs. A subsample

of 511 juvenile birds was selected for isotopic analysis

(Table 1).

Isotopic Composition
There were no significant differences in juvenile Lesser

Yellowlegs feather isotope composition in different years

(F1,355¼ 2.45, P¼ 0.06); therefore, all data for this species

were combined for further analyses. Using the full,

unfiltered dataset, feather isotope values were significantly

different among juvenile shorebird species for d13Cf (F3,505
¼ 12.09, P , 0.001) and d15Nf (F3,505¼ 20.29, P , 0.001),

but not d2Hf (F3,505 ¼ 2.11, P ¼ 0.10). Multivariate linear

regression models indicated significant changes in juvenile

feather isotope (d2Hf, d13Cf, and d15Nf) composition with
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ordinal date for American Golden-Plover (F1,13¼ 7.59, P¼
0.01) and Lesser Yellowlegs (F1,355¼ 68.68, P , 0.001), but

not for Stilt Sandpiper (F1,21 ¼ 2.28, P ¼ 0.11) or Short-

billed Dowitcher (F1,112¼ 2.49, P¼ 0.06; Figure 2). Linear

models indicated that d2Hf decreased with ordinal harvest

date for American Golden-Plover (b¼�52.27 6 12.08, r2

¼ 0.59; F1,13¼ 18.73, P , 0.001) and Lesser Yellowlegs (b¼
�36.12 6 2.52, r2 ¼ 0.37; F1,355 ¼ 204.10, P , 0.001),

suggesting that individuals of these species with natal

origins in coastal or southern regions arrived in Barbados

before conspecifics from inland or more northerly regions.

However, we did not find evidence of differential migration

timing using d2Hf for Stilt Sandpiper (b¼�12.21 6 7.73, r2

¼ 0.11; F1,21¼ 2.49, P¼ 0.13) or Short-billed Dowitcher (b
¼ 0.77 6 1.25, r2 ¼ 0.003; F1,112 ¼ 0.38, P ¼ 0.54).

Feather d13C decreased with ordinal harvest date for

Lesser Yellowlegs (b ¼ �1.30 6 0.21, r2 ¼ 0.10; F1,355 ¼
39.68, P , 0.001) and Short-billed Dowitcher (b¼�0.56 6

0.25, r2 ¼ 0.04; F1,112 ¼ 4.75, P ¼0.03), but there was no

relationship for the other 2 species (P . 0.10). Using d13Cf

only, this suggests that Lesser Yellowlegs and Short-billed

Dowitchers that originated near coastal areas may have

arrived in Barbados earlier than conspecifics from

northern and western regions, respectively. For American

Golden-Plover (b¼�2.85 6 0.79, r2¼ 0.50; F1,13¼ 13.05, P

¼0.003) and Lesser Yellowlegs (b¼�0.44 6 0.12, r2¼ 0.04;

F1,355 ¼ 13.01, P , 0.001), d15Nf decreased in relation to

harvest date, but there was no relationship with ordinal

date for Stilt Sandpiper (b¼ 0.42 6 0.48, r2¼ 0.03; F1,21¼
0.76, P ¼ 0.39) or Short-billed Dowitcher (b ¼ �0.20 6

0.20, r2 ¼ 0.009; F1,112 ¼ 1.05, P ¼ 0.31). These results

suggest that American Golden-Plover and Lesser Yellow-

legs from coastal areas arrived in Barbados before northern

inland birds. Considering the results from all regression

analyses, evidence for differential timing of migration (for
coastal and southern birds arriving earlier in Barbados) is

strongest for Lesser Yellowlegs and American Golden-

Plover and weakest for Short-billed Dowitcher and Stilt

Sandpiper.

Shorebird Origins
A total of 377 juveniles were retained in the analysis

assigning birds to natal origin after accounting for

individuals without the complete set of 3 isotopes and

applying filters for marine-influenced tissues based on

d13Cf and d15Nf as well as d2Hf (Table 1). Our assignment

to origin analysis using probabilistic models resulted in

considerable spatial structure in natal origins for juveniles

of all species. The highest probability of origin of harvested

juvenile American Golden-Plover (total n ¼ 7 after

applying the filters) was the southeastern portion of the

range in southern Nunavut near Hudson Bay (Coats and

Southampton Islands) and southern Baffin Island and/or

an area spanning much of the latitudinal range in central

Alaska (Figure 3A). Harvested juvenile Stilt Sandpiper

(total n ¼ 13) most likely originated from far western

Alaska (North Slope) and/or the Manitoba and Nunavut

portions (near western Hudson Bay) of the breeding range

(Figure 3B). The southern and eastern parts of the Short-

billed Dowitcher’s (total n ¼ 102) breeding range in

southeastern Manitoba, around James Bay (northeastern

Ontario), and in central Quebec, as well as the far western

part of the range on Kodiak Island in Alaska, were likely

areas of natal origin for juvenile birds of this species

(Figure 3C). The highest number of juvenile Lesser

Yellowlegs (total n ¼ 255) likely originated from the

southeastern part of the breeding range, mainly centered

on James Bay in northern Ontario (Figure 3D). However, a

high proportion of birds also originated from central and

western parts of the species’ range, throughout a large area

of the Northwest Territories and Alaska.

DISCUSSION

Our isotopic investigation into the probable origins of

juvenile shorebirds harvested in Barbados during fall

migration has shown considerable structure in the

breeding regions that likely contributed the most to

harvest. Discrete catchment areas were identified for each

species using our assignment to origin method. This will

allow the development of conservation and management

options for these species that are better targeted at the

segments of the population exposed to harvest. For

example, a recent evaluation of North American breeding

shorebird sustainable harvest levels was based on demo-

graphic and population parameters from potential pro-

duction areas within the breeding range of the 4 species

included in our study as identified by expert opinion

(Watts et al. 2015). Applying results from our study will

allow estimates of sustainable harvest levels to be

indicative of Nearctic population segments that are likely

exposed to harvest in Barbados, and will allow the use of

regional demographic estimates when available.

Results from our assignment analyses generally aligned

with our predicted regions of natal origins for juvenile

birds, with the highest numbers of individuals originating

in the eastern portions of their breeding ranges. However,

probabilistic assignments for all species indicated that

juveniles harvested in Barbados could also have origins in

parts of Alaska in the western portion of their breeding

ranges. Watts et al. (2015) assumed that only the Canadian

portion of the American Golden-Plover population was

exposed to harvest, while our results indicate that Alaskan

individuals (juveniles) may also comprise a portion of the

birds harvested in Barbados. In the case of the Short-billed

Dowitcher, our results indicate that it was mostly juveniles

of the eastern subspecies (L. g. griseus) that had high

probabilities of being harvested in Barbados, whereas
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FIGURE 2. Linear models showing variation in feather isotope (d2Hf, d13Cf, and d15Nf) values (%) from juvenile American Golden-
Plover (AMGP), Stilt Sandpiper (STSA), Short-billed Dowitcher (SBDO), and Lesser Yellowlegs (LEYE) harvested during fall migration in
Barbados in July–October of 2013 and 2014 as a function of the date of harvest. Data shown here represent all isotope values prior
to filtering the dataset for potential marine-influenced birds as well as posterior to applying the filter. Dots indicate data values for
filtered and unfiltered samples, and the line and pale gray shaded area represent the linear model with associated 95% confidence
interval for the unfiltered dataset
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Watts et al. (2015) assumed that both the subspecies that

breed in the midcontinental region (L. g. hendersoni) and

the eastern subspecies (L. g. griseus) were equally exposed

to harvest in the Western Atlantic Flyway.

The proportion of juveniles to adults in the harvest also

provides evidence for differential migration pathways

between age classes of American Golden-Plover and Stilt

Sandpiper. Based on the low percentage of juveniles of

these species in the harvest, it appears that a large

proportion of juvenile American Golden-Plovers and Stilt

Sandpipers may use a different fall migration flyway than

adults and thus may bypass Barbados. Juvenile American

Golden-Plovers are known to use a more westerly fall

migration route than adults, moving through the mid-

continental region of North America and likely island-

hopping through the Caribbean Basin (Johnson et al.

2018). Adults using the more easterly trans-Atlantic flyway

likely originate from the same breeding areas, as supported

by recent research on migration patterns of American

Golden-Plovers fitted with geolocators (J.-F. Lamarre

personnal communication, https://doi.org/10.13140/RG.2.

2.20167.60329). The low prevalence of juvenile American

Golden-Plovers and Stilt Sandpipers resulted in low

sample sizes, but nevertheless represented the entirety of

the harvest at the 2 swamps where samples were collected.

Little information exists on age-specific differential fall

migration pathways for the Short-billed Dowitcher. Our

results suggest that estimated sustainable continental

harvest levels (Watts et al. 2015) could possibly be revised

upward for American Golden-Plover and downward for

Short-billed Dowitcher. However, more information would

be required on the routes and migratory connectivity of

adult birds to provide definitive management recommen-

dations.

Feather isotopic composition (d2Hf, d
13Cf, and d15Nf) of

juvenile Lesser Yellowlegs did not vary between our 2 yr of

FIGURE 3. Assignment of shorebirds harvested in Barbados in July–October of 2013 and 2014 to their probable natal origins in
North America using feather d2H of juvenile (A) American Golden-Plover, (B) Stilt Sandpiper, (C) Short-billed Dowitcher, and (D)
Lesser Yellowlegs. Assignments were restricted to each species’ breeding range (black outline). Legend values indicate the potential
number of individuals originating from a single cell (~37 km 3 37 km) in the raster.
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samples, indicating that the population being harvested

likely originated from the same catchment area in both

years and suggesting limited variation in population

exposure to hunting over time. For American Golden-

Plover and Lesser Yellowlegs juveniles, birds harvested

earlier in the season generally had higher d2Hf values,

indicating coastal or more southerly natal origins from

within the breeding range. As the season progressed,

harvested birds of these 2 species became more likely to

have originated from more northerly latitudes (i.e. lower

d2Hf values). This provides potential evidence for a chain

migration pattern, in which birds from more southern

areas arrive at stopover sites before birds from more

northern areas. American Golden-Plover, Short-billed

Dowitcher, and Lesser Yellowlegs also showed a negative

temporal trend in either or both d13Cf and d15Nf values,

supporting the notion that individuals that originated from

coastal areas potentially arrived in Barbados earlier in the

season than birds from other areas. This suggests that a

larger proportion of birds that originated from the

southern portion of the range (which we assume

corresponded to a higher probability of encountering

marine-influenced habitats during the prefledging period)

arrived in Barbados first, a result consistent with our

predictions for Short-billed Dowitcher and Lesser Yellow-

legs, but not American Golden-Plover. Marine-influenced

Short-billed Dowitcher and Lesser Yellowlegs potentially

originated from the James and Hudson Bay regions,

consistent with the known distributions of these 2 species,

which mainly inhabit inland boreal habitats at higher
latitudes (Jehl et al. 2001, Tibbitts and Moskoff 2014).

Marine-influenced American Golden-Plover potentially

originated in greater proportion from the Hudson Bay

and Foxe Basin area, despite significant amounts of coastal

habitat in other portions of their range (Johnson et al.

2018). However, results for the temporal analysis of

American Golden-Plover should be interpreted with

caution, given the small weekly sample sizes.

Similarities in the d2Hp isoscape between Alaska and

eastern parts of North America impeded our ability to

determine whether birds with d2Hf values similar to those

areas originated from the western or eastern parts of their

ranges. Probabilistic assignments using stable isotopes can

be made more accurate or precise when multiple isotopes

are used in combination or when isotopic information is

combined with nonisotopic information (e.g., band en-

counter data, geologger locations, genetics; Van Wilgen-

burg and Hobson 2011, Rundel et al. 2013, Hobson and

Kardynal 2016). Regional species abundance data can

potentially be used to refine assignments for species when

sufficient data are available. However, abundance data are

currently available for only ~20% of the breeding ranges of

the Arctic species (Arctic PRISM; Bart and Johnston 2012,

K. J. Kardynal personal observation), and the other 2

species (Short-billed Dowitcher and Lesser Yellowlegs) are

not well surveyed by other programs (e.g., the Breeding

Bird Survey). Further, use of this prior also assumes an

equal probability that a bird from any part of its range will

migrate through Barbados, thus ignoring any potential

migration flyway structure. Thus, inclusion of such priors

can introduce bias into assignments and this topic requires

further investigation. However, the hypothesis that Alas-

kan Golden-Plover, Stilt Sandpiper, and Lesser Yellowlegs

are exposed to harvest in Barbados can now be tested with

more targeted sampling and use of alternative methods.

Additional species-specific information for our study

species would allow further refinement of our analyses of

assignment to origin. For example, more refined species

distributions, density estimates, flyway structure, and

habitat selection models could potentially be used as prior

information in a Bayesian analysis to increase the accuracy

of results from assignment algorithms.

Our use of a Lesser Scaup calibration algorithm linking

d2Hp with d2Hf potentially has implications for our results

because the use of an inaccurate calibration may skew

probabilistic assignments, particularly latitudinally. How-

ever, general and species-specific shorebird equations are

currently unavailable, and Lesser Scaup are the closest
match to shorebirds for which a calibration algorithm is

available as both have a diet primarily composed of

invertebrates. To develop a shorebird- or species-specific

calibration algorithm, sampling of shorebird tissues grown

on the breeding grounds across broad geographical

gradients will be required (Hobson and Wassenaar 2008)

but is currently not performed because flight feathers are

difficult to sample near the nest from precocial juvenile

shorebirds. Alternatively, captive birds subjected to

simulated latitudes using carefully selected or ‘‘spiked’’

food and drinking water could potentially be used for such

calibrations (Hobson et al. 1999a, 1999b). Meanwhile,

using the Lesser Scaup calibration algorithm appeared to

fit the data reasonably well and our choice of variance

from the calibration algorithm was of a similar magnitude

to that seen previously (Hobson et al. 2014).

Tissue d13C and d15N values can be useful for providing

information on the origins of birds in some areas (Hobson

and Kardynal 2016). However, the lack of described

gradients of these isotopes in the Arctic precluded their

use in probabilistic assignments for our study species.

Instead, d13C and d15N measurements in general are more

valuable for providing insights into diet and trophic

position, and in this study were used to discriminate

between terrestrial vs. marine influences using thresholds

(Hobson and Wassenaar 2008). Further, analysis of these

isotopes in relation to harvest date indicated that some

latitudinal and inland vs. coastal population structure may

have existed in the timing of passage through Barbados for

some species. The proportion of individuals removed from
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the filtered analysis due to potential marine influence was

small for 2 of our study species (Stilt Sandpiper and Short-

billed Dowitcher), but not for juvenile American Golden-

Plover (30% of samples had marine influence) and juvenile

Lesser Yellowlegs in 2014 (12% of samples). Since the

assignment of birds to origin using precipitation isoscapes

can only be done in terrestrial systems, it was not possible

to determine the potential origins of individuals with such

marine influence, and therefore we could not assess

whether this introduced a bias into our assignments (e.g.,

if individuals from a particular region were more likely to

forage in marine environments) for these 2 species.

Adult (after-second-year) shorebirds typically have

higher annual survival and productivity than juvenile birds

(Sandercock 2003); therefore, understanding the origins of

these older birds would likely have a greater impact on the

conservation of these species through the setting of harvest

limits that would afford protection to that segment of the

population. However, we were not able to identify a tissue

that could be used to assign adults to breeding areas. Most

adult shorebird species grow their feathers during the

nonbreeding season, making this tissue unusable for

determining breeding origins using probabilistic methods.

Other tissues used to assess diet and trophic positioning
such as claws, muscle, and liver are chemically active and

represent resources accumulated over the previous weeks

to months (Bearhop et al. 2003, Hahn et al. 2014). For

example, we analyzed isotopes in claws from adult birds

harvested in Barbados, and probabilistic assignments of

adult American Golden-Plover and Lesser Yellowlegs using

claw d2H (d2Hc) revealed potential origins of these species

during fall migration across broad areas of North America

(Appendix Figure 4) and therefore were not useful for

determining potential breeding or refueling locations.

Adult Lesser Yellowlegs were harvested throughout the

hunting season, from July to October, whereas American

Golden-Plover adults were mainly harvested from late

August to October, therefore d2Hc of adult shorebirds

harvested in Barbados likely reflected d2H integrated over

at least the migration period. Values of d2Hp are not

available for many of the Caribbean islands and are

generally not useful due to the strong marine effect in local

precipitation and sea spray. Based on d2Hc values, adult

shorebirds in our study were assigned to areas much

farther north than Barbados, and confirm that birds being

harvested had not been in the study area for sufficient

duration (i.e. several weeks) to exhibit more local or even

southern U.S. d2Hc values.

Hunting has emerged as a potential factor contributing

to the declines of some North American–breeding

shorebirds (Morrison et al. 2012, Watts et al. 2015). Our

study is the first to identify the potential natal origins of

juvenile birds exposed to harvest in Barbados using

probabilistic methods. This information will allow the

identification of populations or subspecies that may be

negatively affected by harvest or able to sustain current

levels. Barbados hunters have taken voluntary measures to

limit the harvest of American Golden-Plover and Lesser

Yellowlegs based on results from a recent evaluation of the

sustainability of their harvest (Watts et al. 2015, E. T. Reed

personal observation), but it is not clear what proportion

of hunters adhere to these voluntary restrictions or how

heavily these species are hunted outside Barbados. Results

from our study can be used to refine estimates of

sustainable harvest levels in Barbados for the species

studied, as these estimates can now more accurately be

based on the size of the population exposed to hunting

estimated from published sources (e.g., Andres et al. 2012),

as opposed to using continental population estimates or

estimates of population segment size determined through

expert opinion.

Shorebird hunting occurs in several countries in the

Western Hemisphere. A broader study of migratory

connectivity and identification of species and populations

exposed to harvest at the scale of the Americas is urgently

needed to determine populations at risk of overharvesting.

We therefore suggest that similar studies should be

undertaken in key hunting areas, especially in the

Caribbean and along the northern coast of South America.

This will undoubtedly require exceptional cooperation

from local hunting organizations as well as governments.

While we were able to assign probable natal origins of

harvested juvenile birds, it is adult survival that has the

greatest influence on population growth in long-lived

species such as shorebirds (Hitchcock and Gratto-Trevor

1997). Therefore, identification of appropriate tissues to

determine breeding origins of adults, development of

shorebird- and shorebird species-specific precipitation-to-

feather calibrations, and more precise understanding of

tissue isoscapes in general are needed so that we can better

understand the contribution of populations and/or sub-

species to the hemispheric harvest. Finally, information on

the distributions and densities of Nearctic, Arctic, and

boreal shorebirds across their breeding ranges is needed to

better evaluate the relative contribution of different

population segments to the hemispheric harvest.
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APPENDIX FIGURE 4. Assignment of adult birds to areas of claw growth in North and Central America using d2H values from the
claws of (A) American Golden-Plover and (B) Lesser Yellowlegs harvested in Barbados during fall migration in July–October of 2013
and 2014. Potential areas of claw growth were limited to possible breeding and migration areas. Legend values indicate the
potential number of individuals originating from a single cell in the raster. Claw d2H was converted to an equivelant feather value
using a transfer function from Hobson et al. (2006).
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