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Abstract. Observations of spiders’ pre-dispersal behavior can be used to answer various ecological and evolutionary
questions. So far, dispersal experiments have often used air currents as a stimulating factor. Effects of electric fields on the
pre-dispersal behavior of spiders have recently been discovered. Electric fields may lead to unexplained variation in results
and limit comparability between previous studies. Here we aim to disentangle the roles of wind and electric fields on the
passive aerial dispersal of three linyphiid spider species. Our results confirm that strong electric fields in the air elicit pre-
dispersal behavior, and in combination with a light wind, facilitate dispersal (take-off). Nevertheless, even the strong
electric fields employed here played a rather supplementary role in spiders’ dispersal with wind remaining the most
influential factor. We recommend that studies of passive aerial dispersal should control for electric field strength but
otherwise use wind as the primary stimulating factor.
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Dispersal is a widespread feature of animal life (Sheldon et al.
2017). Numerous species from at least 29 spider families disperse
passively as aerial plankton (Bell et al. 2005). Such airborne migrants
are largely dependent on atmospheric forces and have very little
ability to control their flight. However, the take-off is mostly initiated
by the organism, and individuals usually enter the airstream actively
by performing pre-dispersal behavior (Reynolds & Reynolds 2009).

In spiders, dispersal over a long distance is called ‘‘ballooning’’,
where individuals become airborne by emitting threads of silk in the
air. Spiders also disperse over short distances by ‘‘rappelling’’, when
the thread attaches to nearby substrate and is then used by the spider
as a bridge to climb along. Prior to ballooning and rappelling, a
spider performs a pre-dispersal behavior called ‘‘tiptoeing’’. It shows a
motivation to disperse by climbing to an elevated position,
straightening its legs, lifting its abdomen and releasing silk threads
into the air. Apart from dispersal behavior, tiptoeing is important for
ecological and evolutionary studies since it indicates spiders’
willingness to disperse (Weyman 1993; but see Lubin & Suter 2013).

Multiple environmental conditions can influence spider ballooning
behavior, including temperature, humidity and wind speed (Bonte et
al. 2007; Simonneau et al. 2016; Postiglioni et al. 2017). Hitherto,
most experiments addressing evolutionary and ecological questions
around spider ballooning have used air currents (, 3 m/s) as
stimulating factors and driving forces for aerial dispersal (e.g.,
Greenstone 1982; Weyman 1995; Bonte et al. 2007; Entling et al.
2011; Mestre et al. 2014; Wolz et al. 2020). However, a role of
atmospheric electric fields in passive aerial dispersal was hypothesized
and discussed already in the 19th century (Loudon et al. 1830). It was
recently demonstrated that electric fields (e-fields) in the air elicit pre-
dispersal behavior in linyphiid spiders and that spiders can sense e-
fields with their trichobothria (Morley & Robert 2018). Consequently,
the lack of control on the presence of e-fields during earlier ballooning
experiments could lead to unexplained variation in the results and
limit comparability between studies.

Here we aim to disentangle the roles of wind and e-fields for passive
aerial dispersal using three spider species from the family Linyphiidae,
which are frequent aeronauts (Blandenier 2009). We study the single
and combined effects of e-fields and wind on tiptoe behavior and
aerial dispersal (take-off).

We collected three spider species from the family Linyphiidae,
namely Agyneta rurestris (C. L. Koch, 1836), Erigone dentipalpis
(Wilder, 1834) and Mermessus trilobatus (Emerton, 1882) from hay
meadows in southwest Germany and northeast France between June
and August 2019 using a vacuum sampler (modified STIHL SH86
blower; Stihl, Waiblingen, Germany). Agyneta rurestris and E.
dentipalpis were selected because they were most abundant in the
sampled grasslands. Mermessus trilobatus, which is native to North
America, was included because we were planning a more detailed
study on the evolution of its dispersal during its invasion process in
Europe (Narimanov et al. 2021). We transferred all individuals into
glass jars (100 ml) with a 1 cm layer of plaster of Paris to create a
humid environment for housing and kept them inside climate cabinets
under standard conditions (258C, RH¼ ~100%, L:D¼16:8). We fed
all spiders ad libitum with springtails (Sinella curviseta).

We adapted our experimental setup from the experiments of
Morley & Robert (2018). The setup was comprised of a wooden
frame holding two horizontal 0.8 3 0.8 m2 metal electrodes, 0.8 m
above each another. We used a high voltage power supply (PHYWE
Systeme GmbH und Co. KG; Göttingen, Germany; Product
number: 13671-93) to create an electric field in the area between
the electrodes. To match natural conditions, where the lower
electrode acts as the negatively charged grounded earth surface
and the area above as the atmospheric potential gradient, we
charged the upper electrode positively relative to the grounded lower
electrode. We used the field strength of 6.25 kV/m by applying 5 kV
over the distance of 0.8 m between the electrodes. The value is quite
high and represents the e-fields in the atmosphere during disturbed
weather. The value was chosen because it revealed clear responses in
a previous study (Morley & Robert 2018). We placed the dispersal
platforms in the middle of the lower electrode. To provide an
elevated point, the dispersal platform consisted of a 7-cm tall
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wooden stick pointed vertically upwards in a 2.5 cm diameter disk
made of plaster of Paris. We prevented spiders from escaping by
placing the platforms in the middle of a 7-cm petri dish filled with
water. The plaster was saturated with water, and a wire grounded it
to the lower electrode. We placed a table fan (diam.¼ 23 cm, 30 W)
approx. 1 m beside the arena at the level of the lower electrode to
provide a suitable wind with a range of 1.3 m/s – 2.3 m/s (Simonneau
et al. 2016). Before the experiments, we measured the wind velocity
at the position of the arena, in the middle of the bottom electrode,
using a cup anemometer (PCE – A420). For control and wind
treatments, no voltage was applied, and the interconnected
electrodes were electrically grounded in order to shield the arena
against possible e-fields existing in the room. We used a vertically
oriented textile mesh at a horizontal distance of 1.5 – 2 m downwind
from the arena to capture dispersing individuals.

We had four treatments, namely control (C), e-fields (E), fan (F),
and the combination of e-fields and fan (EF) to test the roles of the
wind and e-fields, as well as a combination of both on dispersal
behavior. We subjected each spider to all treatments in a
randomized order during consecutive days; one treatment a day.
In each trial, we placed a spider on the dispersal platform and
observed it for up to 10 minutes. We stopped experiments after 10
minutes or once the spider dispersed. We washed and wiped the
dispersal platforms between the trials to remove silk and possible
chemical cues left by the previous spider. All individuals were
offered no food for at least three days before the experiment to
standardize starvation levels and to increase the likelihood of
dispersal (Weyman et al. 1994). We used 140 adult individuals in
total (40 A. rurestris; 36 E. dentipalpis; 64 M. trilobatus) for dispersal
assays. We recorded the presence of tiptoe behavior and dispersal
events (take-off) during the 10 minutes of observation.

We modelled tiptoe and dispersal behavior (presence/absence) by
fitting generalized linear mixed-effects models (GLMM) for a
binomial response from the lme4 package (Bates et al. 2015) in R
3.6.1 (R Core Team 2019). We analysed the explanatory variables,
namely treatment (C, E, EF, F), species (A. rurestris, E. dentipalpis,
M. trilobatus) and also the interaction (treatment 3 species) as fixed
predictors by ANOVA v2- test from the R package car (Fox &
Weisberg 2019) on logistic regression (glmer). We used a Tukey
contrast test to illustrate the difference between the treatments by
using the glht function from the multcomp package in R (Hothorn et

al. 2008). We included individual ID as a random factor for the
within-subject design. Data are available from Figshare, online at:
https://doi.org/10.6084/m9.figshare.13116509.v1

Both tiptoe (v2¼38.21, d.f.¼3, P , 0.0001) and dispersal behavior
(v2 ¼ 49.78, d.f. ¼ 3, P , 0.0001) were strongly influenced by the
experimental treatments. E-fields alone significantly increased the
spiders’ tiptoe behavior, but the effect of wind was more than twice as
strong (Fig. 1A). By contrast, spiders’ dispersal did not increase under
the e-fields but was dependent exclusively on the presence of wind
(Fig. 1B). Highest rates of tiptoe behavior and dispersal were
observed when the e-fields and wind were combined, but the
difference from wind alone was not significant (Fig. 1). There were
also significant differences in behavior among species, both in tiptoe
(v2¼ 47.8, d.f.¼ 2, P , 0.0001) and dispersal (v2¼ 32.76, d.f.¼ 2, P ,

0.0001) (Fig. S1 in supplementary material, online at: http:// doi.org/
10.1636/JoA-S-20-063.s1). The highest number of tiptoe events were
performed by E. dentipalpis (60%), followed by A. rurestris (23%) and
M. trilobatus (17%). Also, dispersal frequencies were higher in A.
rurestris (47%) and E. dentipalpis (42%) than in M. trilobatus (11%).
The interaction of treatment and species was not significant (tiptoe: v2

¼ 6.95, d.f. ¼ 6, P . 0.05; dispersal: v2 ¼ 10.13, d.f. ¼ 6, P . 0.05),
indicating a similar response to the treatments among the tested
species.

To our knowledge, this is the first empirical study testing the single
and combined effects of e-fields and wind on passive aerial dispersal.
Our study confirms that e-fields motivate linyphiid spiders’ dispersal
by eliciting a higher frequency of tiptoe behavior. However, linyphiids
become airborne more frequently in the presence of wind. There was
only a single case among the trials where the e-field alone was
sufficient to lift the spider in the absence of wind. Interestingly, 80% (4
out of 5) of all dispersal events with the e-field treatment was
performed by rappelling. Thus, the forces provided by e-fields in
isolation were sufficient to drag and lift a negatively charged thread
(Hawthorn & Opell 2002) but not to bring the spider aloft within our
experimental setup. However, as the upper electrode limited the
vertical room of our setup to 0.8 m, investigations in setups that
provide more vertical space or even field studies would be needed to
appropriately test if spiders can get airborne with electric fields alone.
As e-fields were not required to motivate high tiptoe or dispersal
events in our study, future experiments could work with air currents
only. Still, the setups should be shielding experimental arenas from

Figure 1.—Effect of treatments (C ¼ control; E ¼ e-fields; EF ¼ e-fields and fan; F ¼ fan) on tiptoe (A; presence/absence) and dispersal
behavior (B; presence/absence). Means 6 SE are presented. Differences between the treatment groups are illustrated with letters based on the
results from the Tukey contrast test.
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the ambient e-fields to avoid any uncontrolled variation that these
may cause in spider behavior. Alternatively, e-fields could be
measured and statistically controlled for. However, as the measure-
ment of static e-fields requires specialized equipment, shielding the
experiment from the ambient field will usually be the more pragmatic
solution.

The values of e-fields used here are relatively high, typical for
exposed positions such as tree crowns in so-called disturbed weather
(Bennett & Harrison 2007). By contrast, spider ballooning has widely
been reported in fair weather conditions when the values of e-fields
are much lower (Vugts & Van Wingerden 1976). Moreover, the
studied linyphiid species are grassland spiders that prevalently
balloon from the tip of grass or any other elevated position in open
habitats. The strengths of e-fields in open habitats can vary between
þ0.05 and þ0.3 kV/m (Bennett & Harrison 2007) with simulated
values at the tip of grass blade reaching up to 1 kV/m (Morley &
Gorham 2020). In contrast to the 6.25 kV/m applied here, e-fields of
1.25 kV/m had no significant effect on the tiptoe behavior of Erigone
spp. in Morley & Robert (2018). Hence, the effects of even weaker e-
fields appear unlikely. Still, to explore the roles of e-fields in less
extreme situations, experiments implementing a wider range of e-
fields strengths are needed. For example, the e-fields equivalent to the
strength often found in grassland with the inclusion of a combination
of different wind speeds.

The present study confirms that strong electric fields in the air
motivate linyphiid spiders to disperse by eliciting higher tiptoe
behavior, and in combination with a light wind, facilitate dispersal
(take-off). Nevertheless, even the strong e-fields employed here played
a rather supplementary role in linyphiid spiders’ dispersal with air
current remaining the most influential factor. Thus, e-fields could
function as initial cues to initiate movement, but their potential roles
for take-off requires study in more realistic situations. Considering
also the higher technical effort to create electric fields compared to
airflow, we recommend that ecological and evolutionary studies of
passive aerial dispersal should control for electric fields strength but
should otherwise use wind as a primary stimulating factor.
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