The meront stage of the oyster protozoan parasite, Perkinsus marinus, cultivated in two media with different fatty acid profiles was analyzed for its fatty acid and lipid class composition. The composition of fatty acids in the prezoosporangium stage of the parasite as well as that of the host oyster were investigated. Although the lipid class composition of meronts was dominated by phospholipids and triacylglycerol, there was no triaclgycerol detected in either culture medium. Despite the difference in fatty acid composition of the two media, the fatty acid composition of meronts in each medium was dominated by 14:0, 16:0, 18:0, 18:1(n-9), 20:1(n-9), 18:2(n-6) and 20:4(n-6), a profile that differed from its host. The quantities of total lipids and fatty acids in meronts increased as the number of meronts increased and far exceeded the initial amounts in the media and in the initial cell inoculum. The meronts harvested 25 d post-inoculation, had about 3 to 6 times higher total lipids and 4 to 13 times higher fatty acids than the amounts contained in the media. The fatty acid profiles of both prezoosporangia and oysters resembled each other and consisted primarily of 16:0, 20:4(n-6), 20:5(n-3), 22:2Δ7,15, and 22:6(n-3). These results indicate that during meront proliferation, the parasite synthesizes certain fatty acids and lipid classes. For development from meront to prezoosporangium, the parasite may rely on its host for lipid resources.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
The Journal of Eukaryotic Microbiology
Vol. 48 • No. 3
May 2001
Vol. 48 • No. 3
May 2001
bivalve
Fatty acids
host lipids
lipid synthesis
marine parasite
meront
parasite culture