Open Access
How to translate text using browser tools
1 January 2020 Opportunistic Development and Environmental Disaster Threat Franciscana Dolphins in the Southeast of Brazil
Flavia Carnelli Frizzera Pinheiro, Hudson Tercio Pinheiro, João Batista Teixeira, Agnaldo Silva Martins, Marta Jussara Cremer
Author Affiliations +
Abstract

The Franciscana dolphin (Pontoporia blainvillei), a small cetacean endemic to southwestern Atlantic coastal waters, is the most endangered marine mammal species in the south Atlantic. In the Espírito Santo State, in southeastern Brazil, the Franciscana dolphin distribution overlaps regions suppressed and threatened by an intensive industrial and port development in the coastal zone. Moreover, most of Franciscana’s home range was recently impacted by the collapse of a dam that released millions of iron mining waste into the Atlantic Ocean. Considering the restricted coastal habitat of the species, these impacts can be considered an immediate threat, increasing the probability of local extinction of the species. This research calls attention to the necessity for improvement in the regional Environmental Impact Assessments, Conservation Action Plans, and to the development of an effective zoning for ports and conservation areas in the region. These actions could increase conservation efforts and mitigate the current and expected impacts on the Franciscana population in the Espírito Santo State.

Brazil is a country with a long coastline, presenting not only a variety of diverse marine ecosystems and a diverse fauna but also intense human coastal settlement and industrial development (Cagnazzi, Parra, Westley, & Harrison, 2013; Diegues, 1999). Aiming to strength its economy, the Brazilian government has recently changed environmental licensing rules, favoring opportunistic development projects such as ports and mining, which bring high social and environmental pressure (Pinheiro et al., 2019). These large industrial projects exert strong pressure on marine ecosystems, leading to loss of biodiversity (International Panel on Climate Change, 2002). Among all the species affected directly and indirectly, coastal marine mammals are particularly vulnerable due their life history characteristics, which include low natural mortality rates, long lifespan, and low pregnancy rates (Cagnazzi et al., 2013; Perrin & Reilly, 1984).

The Franciscana dolphin (Pontoporia blainvillei) is a small cetacean endemic to southwestern Atlantic coastal waters (Pinedo, Praderi, & Brownell, 1989). It is the most endangered cetacean in the South Atlantic, and its preference for coastal habitats contributes to the threatened status of the species (Pinedo et al., 1989; Rocha-Campos, Danilewicz, & Siciliano, 2010). The accidental capture in fishing nets has been considered the main threat to this small cetacean (Frizzera, Tosi, Pinheiro, & Marcondes, 2012; Netto & Siciliano, 2007; Prado, Secchi, & Kinas, 2013; Secchi, Danilewicz, & Ott, 2003). However, its occurrence overlaps in regions suppressed and threatened by industrial pollution and port development (Torre et al., 2012), a factor that impacts the conservation status of the species.

The distribution of the Franciscana dolphin extends from the Espírito Santo State (ES) (18°25′S), southeastern Brazil (Moreira & Siciliano, 1991), to the Golfo Nuevo (42°35′S), Argentina (Crespo, Harris, & González, 1998). Four Franciscana Management Areas (FMAs) are recognized (Secchi et al., 2003), and recently, Cunha et al. (2014) reassessed the FMAs structure and proposed the division of some areas. The existence of two gaps in Franciscana distribution was recently reinforced: one in the southern ES coast (between 21°18′S and 19°40′S) and another in the southern Rio de Janeiro coast (between 22°44′S and 22°59′S) (Amaral et al., 2018; Danilewicz et al., 2012). In this new approach, the ES coast is site for the occurrence of the main threatened stock (FMA Ia), isolated geographically and genetically (Amaral et al., 2018; Cunha et al., 2014). The Franciscana population in this area was estimated at 653 individuals (Danilewicz, 2018).

In the ES, basic information about the biology, ecology, and distribution of the species is still considered lacking (Frizzera & Siciliano, 2012; Rocha-Campos et al., 2010). At the same time, at least 14 new ports are proposed to be established in the ES (Figure 1), resulting in approximately a different harbor complex for every 20 km of coastline. Considering all established and planned port projects, 16 enterprises overlap the restricted area of occurrence for the Franciscana in this state (Figure 1). Moreover, most of Franciscana’s habitat in the ES overlaps the region impacted by the collapse of the Fundão Dam in 2015 (Figure 1). The collapse, also known as the Mariana disaster, released millions of iron mining waste into the Atlantic Ocean (Escobar, 2015; Fernandes et al., 2016).

Figure 1.

Overlapping of the Franciscana Management Area (FMA I), ports and harbors (existent and announced), oceanic dispersion of River Doce after the greatest Brazilian environmental accident (Mariana disaster), and Marine Protected Areas in the Espírito Santo State. The ports (existent and announced) presented in the map are as follows: 1 = Odebrech; 2 = Superporto Leste; 3 = TNC; 4 = Severin; 5 = MLog; 6 = Manabi; 7 = Porto de Linhares; 8 = TEREG; 9 = Odfjell; 10 = Nutripetro; 11 = Imetame; 12 = BABR; 13 = Portocel; 14 = Jurong; 15 = Terminal GNL; 16 = TABR; 17 = Superporto de Praia Mole; 18 = Porto de Tubarão (Vale); 19 = Nisibra; 20 = Porto de Vitória; 21 = Porto Capuaba; 22 = Porto Marlin; 23 = Superporto de Interlagos.

10.1177_1940082919847886-fig1.tif

Environmental Impact Assessments and mitigation plans are part of the national environmental policy of Brazil. Enterprises with significant environmental impact, such as ports, harbors, and mining, are required by regional environmental agencies to conduct studies and elaborate reports to evaluate all possible impacts on the local biodiversity (Leuzinger & Varela, 2014; Santiago, Rezende, Borges, Borges, & Santos, 2015). However, the environmental licensing process in Brazil suffers strong biases, due political and economic influence on the decision-making. In addition, technical assessments are often made on preliminary studies that do not present the real impacts on fauna, flora, soil, air, and water (Oliveira & Cremer, 2018; Santiago et al., 2015). For instance, small cetaceans are rarely considered in environmental impact studies along the Brazilian coast (Domit, Rosa, Sasaki, & Londono, 2009; Silva, 2007). The lack of information exempts the companies from taking concrete steps to mitigate impacts and protects endangered species and their habitats.

Activities related to the establishment and operation of mining and ports pose many threats to the marine biodiversity (Domit et al., 2009; Lamour, Cattani, & Santos Filho, 2009; Valle, Gedanken, & Fischer, 2009), including the Franciscana dolphin (Torre et al., 2012). These industrial endeavors have a high risk of environmental contamination associated with their activities. The Mariana disaster, for instance, resulted in the spillage of 55 to 62 millions of tons of Fe-enriched tailings into the Doce River estuary (Queiroz et al., 2018), and heavy metal rates in shrimp and fishes exceed up to 100-fold the levels tolerated by Brazilian regulations (Bianchini, 2016). As a high-level predator, the Franciscana dolphin is specially affected by the cumulative effects of chemicals in the food web (Torre et al., 2012; Westgate, Muir, Gaskin, & Kingsley, 1997). The long-term exposure to these contaminants may pose a threat to the health and reproductive potential of marine mammals (Bowles, 1999; Kuriyama, Talsness, Grote, & Chahoud, 2005; Marsili et al., 2008). Recent studies have shown high concentrations of bioaccumulative contaminants in Franciscana dolphins along the Brazilian coast (Alonso, 2008; Lailson-Brito et al., 2011; Torre et al., 2012). According to Alonso et al. (2012) and Torre et al. (2012), the accumulation of chemicals in Franciscana dolphins may be related with the increase of industrial development in Brazil.

Moreover, the millions of tons of mud and sediment discharged by the Mariana disaster into the Doce River watershed and the Atlantic Ocean has increased their water turbidity (Hatje et al., 2017). In addition to the disaster, port activities also increase water turbidity and contamination, with sediment suspension caused by regular dredging activities (Kitzmann & Asmus, 2006). This decrease in water quality has the potential to affect the respiration of benthic filtering organisms and fishes (Jefferson, Hung, & Wursig, 2009; Lamour et al., 2009). The increase in sedimentation buries and destroys coastal environments, which changes natural communities and reduces prey availability for Franciscanas and other predators (Jefferson et al., 2009; Valle et al., 2009).

The maritime traffic is intense around ports and can negatively impact cetaceans due potential collisions (Van Waerebeek et al., 2007) and emission of noise (Bejder & Samuels, 2003; Nowacek, 2007). The port of Barra do Riacho, situated in the southern area of the FMA Ia, by itself, recorded in 2013 a total of 272 vessels loading cellulose and steel products and 517 vessels unloading wood in logs and cellulose (LabTrans, 2015). Some studies have shown changes in the behavior and physiology of cetaceans as a result of acoustic disturbances (Argüelles et al., 2016; Bejder et al., 2006; Lemon, Lynch, Cato, & Harcourt, 2006). These activities can interfere with the communication of these animals causing changes in vocal behavior (Buckstaff, 2004; Scarpaci, Bigger, CORkERON, & Nugegoda, 2000). The impact of maritime traffic is expected to increase significantly with the establishment of more ports in the FMA Ia (Campana et al., 2015).

The increase in industrial and human activity on the northern coast of the ES can lead increased environmental contamination and reduced habitat quality. In the Tejo estuary, in Portugal, changes in habitat quality caused by port activities and industrial pollution resulted in the abandonment of the area by a population of Bottlenose dolphin Tursiops truncatus (Santos & Lacerda, 1987). In the Babitonga bay, Brazil, Cremer, Hardt, Júnior, Simões-Lopes, and Pires (2004) have shown that Guiana dolphin Sotalia guianensis have abandoned its core area after the establishment of port infrastructure. Therefore, the proposed industrial development along the ES shore can potentially reduce the ecosystem health of coastal environments considered keystone systems for the conservation of coastal marine mammals (Cremer et al., 2017). In addition to the geographic and genetic isolation of the Franciscana population in the ES (Cunha et al., 2014), the FMA Ia has the smallest Franciscanas’ dolphin population (Danilewicz, 2018). This scenario, coupled with the low intrinsic rate of natural population growth (Siciliano et al., 2002; Secchi et al., 2003; Secchi, 2004), and the negative effects caused by pollution and fishing (Alonso et al., 2012; Cremer & Simões-Lopes, 2008; Frizzera et al., 2012; Prado et al., 2013; Secchi, Ott, & Danilewicz, 2006; Torre et al., 2012), is worrisome. The existent and expected impacts in the ES can be considered an immediate threat, increasing the probability of local extinction of the species.

Some premises are essential to evaluate and mitigate the real effects of ports and industrial impacts on the Franciscana population in the ES. In the short term, the monitoring of abundance and stranding is an important strategy for increasing knowledge about the species in this region. Moreover, the management of the established Marine Protected Areas as well as the creation of the proposed ones (such as the one in the region of the Doce River estuary, where Franciscanas are often recorded; Figure 1) are important tools for the maintenance of the species in the FMA Ia. Further studies on the distribution and habitat use of Franciscana dolphins in the FMA Ia could contribute to identifying priority areas for conservation and for the establishment of ports, trying to mediate economic development and environmental conservation.

Acknowledgments

The authors thank Voz da Natureza and CAT (Conexão Abrolhos-Trindade) teams for the port information and map, and Peggy Miles for the manuscript review. The authors also thank two anonymous reviewers and Justin A. Cummings for providing valuable suggestions to the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Fundação Grupo O Boticário de Proteção à Natureza provided research funding (project 0877–20102). F. F. P. was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES. The “Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq” (Brazil) provided scholarship to M. J. C. (PQ 310477/2017–4).

References

1.

Alonso, M. B., (2008). Organoclorados em Toninhas, Pontoporia blainvillei (MAMMALIA: CETACEA) da região costeira do Estado de São Paulo, Brasil (MSc thesis). Instituto Oceanográfico da Universidade de São Paulo. São Paulo, 97 p. Google Scholar

2.

Alonso, M. B., Eljarrat, E., Gorga, M., Secchi, E. R., Bassoi, M., Barbosa, L., , … Barceló, D., (2012).Natural and anthropogenically-produced brominated compounds in endemic dolphins from Western South Atlantic: Another risk to a vulnerable species. Environmental Pollution, 170, 152–160. Google Scholar

3.

Amaral, K. B., Danilewicz, D., Zerbini, A., Di Beneditto, A. P., Andriolo, A., Alvares, D. J., , … Moreno, I. B., (2018).Reassessment of the Franciscana Pontoporia blainvillei (Gervais & d’Orbigny, 1844) distribution and niche characteristics in Brazil. Journal of Experimental Marine Biology and Ecology, 508, 1–12. Google Scholar

4.

Argüelles, M. B., Fazio, A., Fiorito, C., Pérez-Martínez, D., Coscarella, M., Bertellotti, M., (2016).Diving behavior of southern right whales (Eubalaena australis) in a maritime traffic area in Patagonia, Argentina. Aquatic Mammals, 42, 104–108. Google Scholar

5.

Bejder, L., Samuels, A., (2003).Evaluating the effects of nature-based tourism on cetaceans. In Gales, N., Hindel, M., Kirkwood, R., (Eds.). Marine mammals: Fisheries, tourism and management issues (pp. 229–256). Clayton, Australia: CSIRO Publishing. Google Scholar

6.

Bejder, L., Samuels, A., Whitehead, H., Gales, N., Mann, J., Connor, R., , … Krützen, M., (2006).Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conservation Biology, 20, 1791–1798. Google Scholar

7.

Bianchini, A., (2016). Avaliação do impacto da lama/pluma Samarco sobre os ambientes costeiros e marinhos (ES e BA) com ênfase nas Unidades de Conservação. Google Scholar

8.

Report, Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Retrieved from  http://www.icmbio.gov.br/portal/images/stories/DCOM_relatorio_revisado_atualizado_29_04_2016_AB.pdf Google Scholar

9.

Bowles, D., (1999).An overview of the concentration and effects of metals in cetacean species. Journal of Cetacean Research and Management, 1, 125–148. Google Scholar

10.

Buckstaff, K. C., (2004).Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Marine Mammal Science, 20(4), 709–725. Google Scholar

11.

Cagnazzi, D., Parra, G. J., Westley, S., Harrison, P. L., (2013).At the heart of the industrial boom: Australian snubfin dolphins in the Capricorn Coast, Queensland, Need Urgent Conservation Action. PLoS One, 8(2), 56729. Google Scholar

12.

Campana, I., Crosti, R., Angeletti, D., Carosso, L., David, L., Di-Méglio, N., , … Arcangeli, A., (2015).Cetacean response to summer maritime traffic in the Western Mediterranean Sea. Marine Environmental Research, 109, 1–8. Google Scholar

13.

Cremer, M. J., Hardt, F. A., Júnior, A. T., Simões-Lopes, P. C., Pires, J. S., (2004).Core areas changes in Sotalia guianensis (Cetacea, Delphinidae) population in Babitonga Bay, Santa Catarina. Revista Univille, 9, 12–16. Google Scholar

14.

Cremer, M. J., Holz, A. C., Sartori, C. M., Schulze, B., Paitach, R. L., Simões-Lopes, P. C., (2017).Behavior and ecology of endangered species living together: Long-term monitoring of resident sympatric dolphin populations. In Rossi-Santos, M. R., Charles, W., (Org.), Advances in marine vertebrate research in Latin America (1st ed., Vol. 1, pp. 477–508). Puducherry, India: Springer. Google Scholar

15.

Cremer, M. J., Simões-Lopes, P. C., (2008).Distribution, abundance and density estimates of Franciscanas, Pontoporia blainvillei (Cetacea: Pontoporidae), in Babitonga bay, southern Brazil. Revista Brasileira de Zoologia, 25, 397–402. Google Scholar

16.

Crespo, E. A., Harris, G., González, R., (1998).Group size and distributional range of the Franciscana, Pontoporia blainvillei. Marine Mammal Science, 14(4), 845–849. Google Scholar

17.

Cunha, H. A., Medeiros, B. V., Barbosa, L. A., Cremer, M. J., Marigo, J., Lailson-Brito, J., , … Solé-Cava, A. M., (2014).Population structure of the endangered Franciscana Dolphin (Pontoporia blainvillei): Reassessing management units. PLoS One, 9(1), e85633. Google Scholar

18.

Danilewicz, D., Zerbini, A. N., Andriolo, A., Secchi, E. R., Sucunza, F., Ferreira, E., , … Flores, P. A., (2012). Abundance and distribution of an isolated population of Franciscana dolphins (Pontoporia blainvillei) in southeastern Brazil: Red alert for FMA I? In International Whaling Commission, SC/64/SM17. Google Scholar

19.

Danilewicz, D., (2018). New distribution and abundance assessment of two isolated Franciscana populations in southeastern Brazil through aerial surveys: Implications to fishery management. Resúmenes: 18a RT & XII Congresso SOLAMAC, Lima, 05–08 November 2018. Google Scholar

20.

Diegues, A. C., (1999).Human populations and coastal wetlands: Conservation and management in Brazil. Ocean & Coastal Management, 42, 187–210. Google Scholar

21.

Domit, C., Rosa, L., Sasaki, G., Londono, M. C. R., (2009). Cetáceos no monitoramento ambiental de atividades portuárias: Sentinelas do ambiente marinho. ADEMADAN; Secretaria de Ciencia e Tecnologia para inclusão Social (MCT).(Org.). Gestão ambiental Portuária: Subsídios para o Licenciamento das Dragagens. 1ª ed. Curitiba: Serzegraf, 1, 308–322. Google Scholar

22.

Escobar, H., (2015).Mud tsunami wreaks ecological havoc in Brazil. Science, 350, 1138–1139. Google Scholar

23.

Fernandes, G. W., Goulart, F. F., Ranieri, B. D., Coelho, M. S., Dales, K., Boesche, N., Bustamante, M., , … Fernandes, S., (2016).Deep into the mud: Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação, 14, 35–45. Google Scholar

24.

Frizzera, F. C., Siciliano, S., (2012). Em busca da Toninha (Pontoporia blainvillei) na foz do Rio Doce, Norte do Espírito Santo, Brasil: Levantamentos embarcados. In 15 Reunião de Trabalho dos Especialistas em Mamíferos Aquáticos da América do Sul, Puerto Matrin. Abstract 149. Google Scholar

25.

Frizzera, F. C., Tosi, C., Pinheiro, H., Marcondes, M., (2012).Captura acidental de toninha (Pontoporia blainvillei) na costa norte do Espírito Santo, Brasil. Bol Do Mus Biol Mello Leitão, 29, 81–86. Google Scholar

26.

Hatje, V., Pedreira, R. M. A., De Rezende, C. E., Schettini, C. A. F., De Souza, G. C., Marin, D. C., Hackspacher, P. C., (2017).The environmental impacts of one of the largest tailing dam failures worldwide. Scientific Reports, 7, 1–13. Google Scholar

27.

International Panel on Climate Change. (2002). Climate change 2001: Synthesis report (397 p). Cambridge, New York: Cambridge University. Google Scholar

28.

Jefferson, T. A., Hung, S. K., Wursig, B., (2009).Protecting small cetaceans from coastal development: Impact assessment and mitigation experience in Hong Kong. Marine Policy, 33, 305–311. Google Scholar

29.

Kitzmann, D., Asmus, M., (2006).Gestão ambiental portuária: Desafios e possibilidades [Port environmental management: Challenges and possibilities]. Revista de Administração Pública, 40(6), 1041–1060. Google Scholar

30.

Kuriyama, S. N., Talsness, C. E., Grote, K., Chahoud, I., (2005).Developmental exposure to low-dose PBDE-99: Effects on male fertility and neurobehavior in rat offspring. Environmental Health Perspectives, 113, 149–154. Google Scholar

31.

LabTrans. (2015). Plano Mestre Porto de Barra do Riacho [Master plan Porto de Barra do Riacho]. Florianópolis, SC, 257. Retrieved from  https://www.infraestrutura.gov.br/images/SNP/planejamento_portuario/planos_mestres/versao_completa/pm05.pdf Google Scholar

32.

Lailson-Brito, J., Dorneles, P. R., Azevedo-Silva, C. E., de Freitas Azevedo, A., Vidal, L. G., Marigo, J., , … Torres, J. P. M., (2011).Organochlorine concentrations in Franciscana dolphins, Pontoporia blainvillei, from Brazilian waters. Chemosphere, 84, 882–887. Google Scholar

33.

Lamour, M. R., Cattani, P. E., Santos Filho, J. R., (2009). Gestão Ambiental Portu´ria. Subsídios para o licenciamento das dragagens. [General aspects about the destination of dredged sediments: Legislation, uses and impacts to the environment], In E.B. Boldrini & E.V. Paula (Eds.). Ademadan: Curitiba pp.323–337.  Google Scholar

34.

Lemon, M., Lynch, T. P., Cato, D. H., Harcourt, R. G., (2006).Response of travelling bottlenose dolphins (Tursiops aduncus) to experimental approaches by a powerboat in Jervis Bay, New South Wales, Australia. Conservation Biology, 127(4), 363–372. Google Scholar

35.

Leuzinger, M. D., Varella, M. D., (2014).O meio ambiente na constituição federal e na legislação infraconstitucional: Avanços ou retrocessos (1988 a 2014)? [The environment in the federal constitution and infraconstitutional legislation: Advances or retrospects (1988 to 2014)?] Revista Do Programa de Pós-Graduação em Direito da UFC, 34(2), 299–314. Google Scholar

36.

Marsili, L., Casini, S., Bucalossi, D., Porcelloni, S., Maltese, S., Fossi, M. C., (2008).Use of immunofluorescence technique in cultured fibroblasts from Mediterranean cetaceans as new “‘in vitro” tool to investigate effects of environmental contaminants. Marine Environmental Research, 66, 151–153. Google Scholar

37.

Moreira, L. M., Siciliano, S., (1991). Northward extension range for Pontoporia blainvillei. In 9° Biennial Conference on the Biology of Marine Mammals, Chicago, Illinois. Abstract 48. Google Scholar

38.

Netto, R. F., Siciliano, S., (2007).Contribuição ao conhecimento da distribuição da toninha Pontoporia blainvillei (Gervais & d’Orbigny, 1844) no estado do Espírito Santo, sudeste do Brasil [Contribution to the knowledge of the distribution of the pontoporia blainvillei (Gervais & d’Orbigny, 1844) in the state of Espírito Santo, southeastern Brazil]. Bol Do Mus Biol Mello Leitão, 21, 35–45. Google Scholar

39.

Nowacek, D. P., (2007).Responses of cetaceans to anthropogenic noise. Mammal Review, 37(2), 81–115. Google Scholar

40.

Oliveira, T. M. N., Cremer, M. J., (2018).Saúde ambiental [Environmental health]. In Sganzerla, A., (Ed.), Bioética ambiental (pp. 1–11). Curitiba, Brazil: Pucpress. Google Scholar

41.

Perrin, W. F., Reilly, S. B., (1984). Reproductive parameters of dolphins and small whales of the family Delphinidae (pp. 97–133). Cambridge, England: International Whaling Commission. Google Scholar

42.

Pinedo, M. C., Praderi, R., Brownell, R. L.Jr. (1989).Review of the biology and status of the Franciscana, Pontoporia blainvillei. In Perrin, W. F., (Ed.). Biology and conservation of the river dolphins (pp. 46–51). Gland, Switzerland: International Union for Conservation of Nature. Google Scholar

43.

Pinheiro, H. T., Teixeira, J. B., Francini-Filho, R. B., Soares-Gomes, A., Ferreira, C. E. L., Rocha, L. A., (2019).Hope and doubt for the world’s marine ecosystems. Perspectives in Ecology and Conservation, 17, 19–25. Google Scholar

44.

Prado, J. H. F., Secchi, E. R., Kinas, P. G., (2013).Mark-recapture of the endangered Franciscana dolphin (Pontoporia blainvillei) killed in gillnet fisheries to estimate past bycatch from time series of stranded carcasses in southern Brazil. Ecological Indicators, 32, 35–41. Google Scholar

45.

Queiroz, H. M., Nóbrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., , … Otero, X. L., (2018).The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? The Science of the Total Environment, 637–638, 498–506. Google Scholar

46.

Rocha-Campos, C. C., Danilewicz, D., Siciliano, S., (2010). Plano de ação naiconal para a conservação do pequeno cetáceo toninha: Pontoporia blainvillei. In Série Espécies Ameaçadas no 10. Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, Brazil. Google Scholar

47.

Santiago, T. M. O., Rezende, J. L. P., Borges, L. A. C., Borges, A. F., Santos, A. A., (2015).A eficácia da avaliação de impactos ambientais no Brasil [The effectiveness of the evaluation of environmental impacts in Brazil]. Revista Ibero-Americana de Ciências Ambientais, 6(2), 37–51. Google Scholar

48.

Santos, M. E., Lacerda, M., (1987).Preliminary observations of the bottlenose dolphin (Tursiops truncatus) in the Sado estuary (Portugal). Aquatic Mammals, Moline, 13(2), 65–80. Google Scholar

49.

Scarpaci, C., Bigger, S. W., CORkERON, P. J., Nugegoda, D., (2000).Bottlenose dolphins (Tursiops truncatus) increase whistling in the presence of ‘swim-with-dolphin’ operations. Journal of Cetacean Research and Management, 2, 183–185. Google Scholar

50.

Secchi, E. R., (2004). Modelling the population dynamics and viability analysis of Franciscana (Pontoporia blainvillei) and Hector’s dolphins (Cephalorhynchus hectori) under the effects of bycatch in fisheries, parameter uncertainty and stochasticity (PhD dissertation). University of Otago, Dunedin, 247 p. Google Scholar

51.

Secchi, E. R., Danilewicz, D., Ott, P. H., (2003).Applying the phylogeographic concept to identify Franciscana dolphin stocks: Implications to meet management objectives. Journal of Cetacean Research and Management, 5(1), 61–68. Google Scholar

52.

Secchi, E., R., Ott, P., Danilewicz, D., (2006). Effects of fishing bycatch and the conservation status of the Franciscana dolphin, Pontoporia blainvillei. In N. Gales, M. Hindell & R. Kirkwood (Eds.). Marine Mammals: Fisheries, Tourism and Management Issues, Edition: 1st, Chapter: 9, CSIRO Publishing: Collingwood, Australia. pp.174–191.  Google Scholar

53.

Siciliano, S., Di Beneditto, A. P., Ramos, R., (2002).A toninha, Pontoporia blainvillei (Gervais and D’Orbigny, 1884) (Mammalia: Cetacea) nos Estados do Rio de Janeiro e Espírito Santo, costa sudeste do Brasil: Caracterização dos hábitats e possíveis fatores de isolamento das populações [The porpoise, Pontoporia blainvillei (Gervais and D’Orbigny, 1884) (Mammalia: Cetacea) in the States of Rio de Janeiro and Espírito Santo, southeast coast of Brazil: Characterization of habitats and possible factors of population isolation]. Boletim Do Museu Nacional. Nova Serie, Zoologia, 146, 1–15.  Google Scholar

54.

Silva, F. O., (2007). Conhecimento tradicional e etnoconservação de cetáceos em comunidades caiçaras do município de Cananéia, litoral sul de São Paulo [Traditional knowledge and ethnoconservation of cetaceans in caiçaras communities in the municipality of Cananéia, south coast of São Paulo]. Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz”. Centro de Energia Nuclear na Agricultura. Google Scholar

55.

Torre, A., Alonso, M. B., Martínez, M. A., Sanz, P., Shen, L., Reiner, E. J., , … Barceló, D., (2012).Dechlorane-related compounds in Franciscana dolphin (Pontoporia blainvillei) from southeastern and southern coast of Brazil. Environmental Science & Technology, 46, 12364–12372. Google Scholar

56.

Valle, J. C. V., Gedanken, N., Fischer, W. A., (2009).Atividades portuárias e produtividade pesqueira sob as perspectivas socioeconômica e ambiental [Port activities and fishing productivity from socio-economic and environmental perspectives]. In Boldrini, E. B., Paula, E. V., (Eds.). Gestão Ambiental Portuária. Subsídios para o licenciamento das dragagens (pp. 19–28). Curitiba, Brazil: Ademadan. Google Scholar

57.

Van Waerebeek, K., Baker, A. N., Félix, F., Gedamke, J., Iñiguez, M., Sanino, G. P., , … Wang, Y., (2007).Vessel collisions with small cetaceans worldwide and with large whales in the Southern Hemisphere, an initial assessment. Lat Am J Aquat Mamm, 6, 43–69. Google Scholar

58.

Westgate, A. J., Muir, D. C., Gaskin, D. E., Kingsley, M. C., (1997).Concentrations and accumulation patterns of organochlorine contaminants in the blubber of harbor porpoises, Phocoena phocoena, from the coast of Newfoundland, the gulf of St Lawrence and the Bay of Fundy/Gulf of Maine. Environmental Pollution, 95(1), 105–119. Google Scholar
© The Author(s) 2019 Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Flavia Carnelli Frizzera Pinheiro, Hudson Tercio Pinheiro, João Batista Teixeira, Agnaldo Silva Martins, and Marta Jussara Cremer "Opportunistic Development and Environmental Disaster Threat Franciscana Dolphins in the Southeast of Brazil," Tropical Conservation Science 12(1), (1 January 2020). https://doi.org/10.1177/1940082919847886
Received: 15 November 2018; Accepted: 11 April 2019; Published: 1 January 2020
KEYWORDS
conservation
contamination
environmental impact
Espírito Santo State
harbor
Pontoporia blainvillei
port
Back to Top