Jill Schroeder, Stephen H. Thomas, Leigh W. Murray
Weed Science 52 (1), 28-46, (1 January 2004) https://doi.org/10.1614/P2002-113
KEYWORDS: Weed–nematode interactions, weed biology, weed–pest interactions, interspecific interference, intraspecific interference
A field microplot experiment was conducted in 1996 and 1997 to determine the influence of root-knot nematodes on intra- and interspecific interactions between chile pepper (chile) and spurred anoda and between chile and yellow or purple nutsedge (or both) using a substitution design. An additional objective was to determine the influence of London rocket, a winter annual and host plant for root-knot nematodes, on the inter- and intraspecific interactions between chile and spurred anoda. Twelve plant combinations were planted into paired 76-cm-diam microplots at a density of 24 plants per microplot each year. Each pair of microplots had one root-knot nematode–infested and one uninfested plot. One randomly selected plant pair or triplet from each plot was destructively sampled in June, July, August, and September each year. Data included leaf area, plant dry weights (leaf, stem, root or root plus rhizome, chile fruit, and nutsedge tuber), and nematode egg production from the belowground biomass of the different plant species within a 2,355-cm3 sampled soil volume. Chile hosted the highest population of root-knot nematodes, followed by spurred anoda, purple nutsedge, and yellow nutsedge. Few root-knot nematode eggs were recovered from London rocket before incorporation into the microplots each spring. Root-knot nematode populations were higher in 1997 and, as a result, more interactions between nematodes and plant combinations were observed for chile. Spurred anoda and root-knot nematodes reduced chile shoot and root weights to levels not significantly different from zero in 1997. Yellow and purple nutsedge shoots, except for those from the original tuber, were removed throughout the season, and these species interfered less with chile. Spurred anoda was not affected by interspecific interference. Few interactions were observed between the spurred anoda plant combinations and root-knot nematodes. In June 1996, low populations of root-knot nematodes (< 4,000 eggs per gram of root) stimulated spurred anoda growth, but higher populations in June 1997 (> 30,000 eggs per gram of root) reduced spurred anoda growth. Prior presence of London rocket had little consistent influence on spurred anoda or chile. Yellow and purple nutsedge growth variables were affected by interference from chile and the other nutsedge species. Tuber number and tuber weight were higher when plants were infected with root-knot nematodes, particularly early in the season. The enhanced tuber production may increase early-season interference from nutsedge species under production conditions. The results suggest that the presence of root-knot nematodes influences plant interference, but the effect is species specific. Annual plants are affected differently compared with perennial nutsedges, possibly because of the continuous association between the perennials and the parasite.
Nomenclature: London rocket, Sisymbrium irio L. SISIR; purple nutsedge, Cyperus rotundus L. CYPRO; spurred anoda, Anoda cristata (L.) Schleckt. ANVCR; southern root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood; yellow nutsedge, Cyperus esculentus L. CYPES; chile pepper, Capsicum annum L.