
Justification for site-specific weed management based
on ecology and economics

Authors: Maxwell, Bruce D., and Luschei, Edward C.

Source: Weed Science, 53(2) : 221-227

Published By: Weed Science Society of America

URL: https://doi.org/10.1614/WS-04-071R2

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Weed-Science on 17 May 2024
Terms of Use: https://bioone.org/terms-of-use



Maxwell and Luschei: Ecological justification of SSWM • 221

Weed Science, 53:221–227. 2005

Symposium

Justification for site-specific weed management based on
ecology and economics

Bruce D. Maxwell
Corresponding author. Department of Land
Resources and Environmental Sciences, Montana
State University, Bozeman, MT 59717;
bmax@montana.edu

Edward C. Luschei
Department of Agronomy, University of Wisconsin–
Madison, Madison, WI 53706

One of the primary benefits of site-specific agricultural technologies is the potential
to reduce the use of polluting inputs, thereby minimizing ecological damage. Weeds
are often found in patches, so site-specific (field scale) management offers a straight-
forward opportunity to minimize ecological effects related to wasteful broadcast use
of herbicides. Beyond possible efficiencies related to accurate targeting, site-specific
technologies, through a process of parameterizing management decision models for
each field, may improve ecological understanding of weed populations and thus
encourage ecologically based management. This hypothesis was assessed with a sim-
ple model that combined economic injury–level prediction with a single parameter
(growing season precipitation) to represent environmental variability. Model simu-
lations of crop yield in response to weed density at a virtual farm and six surrounding
regional experiment stations suggested that localized (on-farm field) parameter esti-
mation may help to circumvent the variability associated with damage function
extrapolation from small-plot experiments at experiment stations and thereby im-
prove predictive accuracy for site-specific weed management (SSWM) strategies.
Thus, remote sensing and SSWM technologies may allow producers to reduce the
risk associated with the reduced use of purchased inputs and greater reliance on
natural weed population–regulating mechanisms. Effective ecologically based weed
management may be dependent on local parameterization of models.

Key words: Ecologically based weed management, field-scale experimentation, in-
tegrated weed management, model parameterization, precision farming, weed ecol-
ogy.

Site-specific weed management (SSWM) can be justified
based on the irrefutable and tautological premise that there
is no need to attempt to control weeds where they are not
present in crop production fields. From a practical stand-
point, however, the input cost savings associated with
SSWM has been found to be rather small (Oriade et al.
1996) in relation to the costs associated with determining
the location of the weeds and selectively applying the control
measures. Site-specific management may include additional
costs associated with rental or ownership of geographic po-
sitioning system (GPS) technology, the use of geographic
information systems to create weed maps, and the cost of
differential application of management across a field (Van
Wychen et al. 2002). Luschei et al. (2001) found that after
including technological implementation costs in a Montana
spring wheat (Triticum aestivum L.) production system, site-
specific weed control could increase net returns relative to
broadcast herbicide application if the field was less than 50
to 60% infested with wild oat (Avena fatua L.). The maxi-
mum economic benefit that could be realized was therefore
approximately half the cost of the herbicide. A wild oat
control program aspiring to stop all seed production would,
on average, realize a relatively small net benefit in Montana
spring wheat fields. Restricting application to 30 to 40% of
the field would produce a net gain of 10 to 20% of the
input costs. However, in higher value corn (Zea mays L.)
production systems of Wisconsin, roughly half the field corn
producers are willing to pay more than this amount to mit-

igate all risks by contracting management with other con-
sultants and application specialists (Boerboom et al. 2003),
despite the incentive for those firms to overapply inputs.

Given the limited economic benefits of site-specific weed
control and the apparent value placed by producers on not
having to concern themselves with weed control problems,
it would be difficult to justify the use of SSWM on eco-
nomic grounds alone. A far stronger case exists for the link-
age between SSWM and the minimization of off-target en-
vironmental effects caused by agrochemical application.
Most ecological perturbations caused by agrochemicals,
whether they are on- or off-farm, would be classified as ex-
ternal to the economic forces driving decision making.

The first ecological justification for the use of SSWM that
comes to mind stems from the overwhelmingly probable
notion that a lack of herbicide application perturbs local
(within field or adjacent fields) ecological processes less than
application of a herbicide. This is not to say that herbicides
have an intrinsically negative effect on ecosystem processes
or that natural systems are not robust to perturbations of
food webs. We merely claim that for situations in which
there are real risks that undesirable effects do occur, SSWM
offers an opportunity to lower the risk of external impact of
these effects. It is therefore possible that producers using
SSWM will have, in comparison with non-SSWM, a net
benefit that is difficult to quantify.

Although an ecological justification for SSWM may be
convincing from a broad social perspective, decisions are
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made by land managers who will likely be focused on short-
run economics. It is therefore pivotally important to inves-
tigate possible motivations causing lack of adoption and to
determine which of these motivations can be tempered by
improvements in research or engineering.

A second ecological justification for the use of SSWM
and the focus of this article is based on the idea that use of
GPS technology to georeference crop and weed response to
management and the environment can produce a local body
of knowledge that may allow an otherwise severely con-
strained management based on ecological knowledge of the
weeds. Ecologically based weed management (EBWM) in-
cludes the use of density thresholds and augmentation of
natural weed population–regulating mechanisms (NRC
1996). Implementation of EBWM is plagued by difficulties
of extrapolation and interpolation from small-plot experi-
ments (Jasieniuk et al. 1999; Lindquist et al. 1996, 1999).
Ecological information derived from small-plot experiments
about weeds has rarely been applied directly to weed man-
agement. In most cases, such information is indirectly syn-
thesized and incorporated into decision support systems to
predict weed population dynamics, weed impacts, or both
on crops (Mortensen et al. 2000). We propose that site-
specific parameterization of crop–weed response models of-
fers a method to increase the predictive accuracy and thereby
address a producer’s concern that impedes adoption of
EBWM methods. Ecologically based crop production man-
agement is inherently risky because of the uncertainty in net
returns caused by the complexity of interactions that deter-
mine crop response and weed population dynamics in more
naturally regulating systems (Maxwell 1999). The uncer-
tainty is compounded by attempting to create a knowledge
base of weed biological responses to management derived
from small plots on experiment stations that may be at great
distances from where the knowledge is applied on a farm
and thus are likely to represent different climates, edaphic
features, and other factors of ecological importance.

We set out to assess the question, would use of the site-
specific agriculture technology data stream (crop yield and
weed abundance information for a field) improve our ability
to make management decisions over the use of the same
type of information from small-plot competition experi-
ments (SPCE) at different sites? We selected the economic
injury level (EIL) (threshold density) for wild oat on spring
wheat as the simplest ecological relationship to base our as-
sessment. The EIL is based on the competitive relationship
between the weed and the crop; thus, one can assume that
it is fundamentally an ecological metric. We took this ap-
proach because we thought that if we failed to show an
advantage of local (on-farm) parameterization of the yield
loss function with this simplest of ecological relationships,
then adding the complexity of more ecological factors (e.g.,
weed population demographic model parameters) would
only serve to make the assessment more complex and less
likely to be a productive illustration of the application of
EBWM. If we were to find that site-specific parameteriza-
tion of the yield loss function increased net returns to the
farmer over the use of SPCE parameterization of the same
function, then we could conclude some level of ecological
justification for the use of site-specific technology.

Unfortunately, there were no data sets that we knew of
that could be used to empirically assess this question. Thus,

we chose to investigate the feasibility of the local-parame-
terization scheme using a method common in ecological sci-
ences (e.g., Paice et al. 1998). We used our knowledge of
weed–crop dynamics and precipitation frequencies, much of
which were empirically determined, to explore the inferen-
tial consequences of several forecasting methodologies. This
analytical procedure involves using our current understand-
ing of the ecological dynamics to construct a process model
(Hilborn and Mangel 1997) to which a random amount of
process error (variation due to environmental stochasticity
not related to the specific process) is added. We then ex-
plored how different forecasting strategies performed under
several different scenarios using the data sets simulated by
the stochastic process described above. In this article we
therefore explored how local-parameterization schemes per-
formed relative to SPCE extrapolation, contingent on the
process model representing the true data–generating process
that we will term reality.

Our general objective was to investigate how the accuracy
and precision of decision-making forecasts based on wild oat
EIL were degraded when a production function (yield mod-
el) was strongly driven by a stochastic variable. We specu-
lated that extrapolation of regionally derived crop–weed re-
lationships from SPCEs and subsequent calculation of the
EIL from these experiments (EILe) would be particularly
difficult and that local parameterization of the production
function and estimation of EIL at the farm field (EILf) using
site-specific technologies might be a means to mitigate the
uncertainty involved in the decision-making process if these
ecologically based models were used. Luschei et al. (2001)
provided a detailed example of how site-specific technologies
can be applied for local parameterization of a weed damage
function at the field scale.

Materials and Methods

Process Model

The process model form was selected based on the com-
monly used saturation function of chemical kinetics pro-
moted by Cousens (1985):

i ·x
y(x) 5 y · 1 2 [1]0 1 21 1 i ·x/a

The variable x represents weed density, parameter y0 rep-
resents the weed-free yield, i represents the per-weed yield
effect for low weed densities, and a represents the maximum
proportional yield loss at high weed densities. We considered
the process model to included resource dependency (grow-
ing season precipitation, z) by expanding y0 as a second-
order polynomial in z and fitting the relationship to exper-
iment station data (Table 1). The relationship between pre-
cipitation and spring wheat yield in north-central Montana
is based on a 3-yr nitrogen fertilization study (R. Engel,
unpublished data).

(b 1 b z)x0 12y(x, z) 5 (c 1 c z 1 c z )· 1 2 [2]0 1 2 [ ]1 1 (b 1 b z)x/a0 1

Because it was unclear whether i also might be a function
of moisture (Mortensen and Coble 1989), we examined
three separate cases: i a constant (b1 5 0), i a negatively
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TABLE 1. Process model and candidate prediction model structures.
Parameters with ‘‘hats’’ are estimated from the SPCE data generated
by the process model. Although the form of the 6-parameter pre-
diction model is identical to the process generating the data, the
randomness involved in the SPCE realizations cause the parameter
estimates to deviate from their ‘‘true’’ values.

Parameters Model structure

Process model
6 known 2y(x, z ; a, b, c ) 5 (c 1 c z 1 c z )0 1 2

(b 1 b z)x0 13 1 2[ ]1 1 (b 1 b z)x/a0 1

3 estimated
b̂x

ˆy(x ; â, b, ĉ) 5 ĉ 1 21 2ˆ1 1 bx/â

6 estimated 2ˆy(x, z ; â, b , ĉ ) 5 (ĉ 1 ĉ z 1 ĉ z )0 1 2

ˆ ˆ(b 1 b z)x0 13 1 2[ ]ˆ ˆ1 1 (b 1 b z)x/â0 1

TABLE 2. Parameter values used in the process model. The three
values listed for b correspond to cases where the ‘‘i ’’ parameter is
a constant, positive, and negative linear function of growing-season
precipitation, respectively. Values were determined by the analysis
of independent experiments and were intended to represent typical
and reasonable values for a Montana wild oat–spring wheat system.

Parameter Value

c0
c1
c2
b0
b1
a

2 1.0557
0.4415

2 0.0070
(0.010, 1 0.0150, 2 0.0050)
(0.000, 1 0.0005, 2 0.0015)

0.8

FIGURE 1. North-central Montana cities used for precipitation data records.
Any eight cities became the site for a virtual small-plot competition exper-
iments, and an additional city was selected as the site of the virtual farm
field in any given replication of the simulation experiments.

sloped linear function of growing season precipitation (b1 ,
0), and i a positively sloped linear function (b1 . 0).

The parameter a in Equations 1 and 2 is the maximum
proportional yield loss at high weed density and was as-
sumed to be constant in order to simplify the interpretation
of results. The parameter a was set at 0.8 because it is at
the high end of a spectrum of values found for wheat and
wild oat (B. Maxwell, unpublished data) and ensures iden-
tification of an EIL. If a is low, there would be cases where
net return would be highest with no management regardless
of weed density; thus, no EIL would be identified. Variation
in a is likely to have an effect on results (Cousens 1986),
but with our attempt to simplify interactions among sources
of variability, we chose to hold a constant. The parameter
values used in the process model are included in Table 2.

Although it would have been possible to include variables
like relative time of emergence in Equation 2, it would have
required that additional assumptions be made about popu-
lation emergence curves and their dependence on moisture.
We assume that we can capture the effect of any average
value in the estimates of the competitive coefficients and
that the variation in yield due to precipitation can be used
to cover the predictive consequences of moisture-driven bi-
ological response variability.

Distribution of Growing Season Precipitation

The March through May precipitation (pre–weed man-
agement decision precipitation or pre-GSP) and the March
through August precipitation (total growing season precip-
itation or GSP) were calculated from historical records of
many north-central Montana weather stations (Figure 1).
Data were edited to remove years with incomplete records.
The set of all (spatial and temporal) weather records was
randomly sampled in simulations. The prediction based on
the March through May precipitation was made by pre-
dicting GSP from pre-GSP. This prediction was based on
the historical correlation between the two quantities. We
regressed GSP on pre-GSP, resulting in the following equa-
tion (r2 5 0.51):

P 5 11.426 1 1.188P .GSP March–May [3]

The within-site (across years) and within-year (across
sites) variations are shown in Figure 2. Some of the weather
records began in 1893, so the portion shown in the graph
is a subset of all the data collected. The average within-year
variation (for those years with more than four sites) was
approximately three times smaller than the within-site var-
iation. This indicates that there was both a temporal and
spatial component to precipitation variability, and the tem-
poral component was largest.

Simulated Small-Plot Data

The predictions were made using an ‘‘estimated’’ process
model. The estimation was made after using the ‘‘true’’ pro-
cess model to simulate the results of an additive design ex-
periment for sets of eight SPCEs. The weed densities used
were 0, 10, 25, 50, 100, and 200 plants m22 replicated four
times (24 observations) within a year at each site. Process
noise (Hilborn and Mangel 1997) was added to data, with
« ; N(1, 0.2):

y (x, z) 5 y(x, z)·« [4]i i

The noise was added in such a way as to produce a con-
stant proportional variation rather than a constant absolute
(additive) variation. This was in direct contrast to the as-
sumptions of the regression model used to fit these data. If
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FIGURE 2. Mean, standard deviation, and maximum and minimum growing
season precipitation for spring wheat growing areas in north-central Mon-
tana.

the factors responsible for process noise were connected with
plant growth factors, then this assumption was reasonable.

The standard deviation of the proportion represented by
the noise was 0.2 (or 20%). This value was a reasonable
and conservative estimate of the level of process noise found
in most wild oat SPCE (Carlson and Hill 1985; Cousens
et al. 1987; O’Donovan et al. 1985).

Fixed Site Factor
To determine the loss of predictive accuracy that might

accompany the variation of a site factor that differs from
location to location but not year to year, each maximum
yield was multiplied by g ; N(1, 0.2):

2y (z ; g) 5 (c 1 c z 1 c z )·g [5]0 0 1 2

All the data from any SPCE (i.e., all the plots in an
additive design experiment) were multiplied by the same
factor. This factor was called a fixed site factor because it
was designed to represent a temporally constant local influ-
ence on the crop yield other than precipitation (e.g., depth
to hardpan and background fertility). When extrapolating
results, a different random number draw (for the fixed site
factor) influenced the yield for the site where prediction was
taking place (i.e., virtual farm field) unless prediction was
occurring in the same location as the experiment station.

Evaluation of Prediction Accuracy

The simulated validation procedure began with the pro-
cess model and process error. This model was used to sim-
ulate data from eight independent SPCEs between a weed
and a crop. A level of growing season precipitation was as-
signed to each SPCE based on a random draw from a dis-
tribution of precipitation records assembled for 985 (post-
editing) site-years of data from 27 sites within the wheat-
producing area of north-central Montana (Figure 2). Eight
experiment stations in a region surrounding a farm repre-
sents a higher density than the two experiment stations that
actually exist in this region of Montana, but we entered into
the analysis with the utmost optimism in maximizing the
SPCE data available for making predictions.

Nonlinear least squares regression (Wolfram Research Inc.
1999) was used to fit the data combined from the eight
SPCE sites. We considered three scenarios for fitting the
SPCE data. The first was to fit the data without including
the influence of precipitation (three-parameter model), that
is, we assumed that we had no knowledge of the influence
of precipitation on weed-free yield when, in fact, it was the
process generating variation in weed-free yield in the sim-
ulated SPCE data. The second scenario included growing
season precipitation in the regression model (six-parameter
model), that is, we assumed that the specific relationship
between growing season precipitation and weed-free yield
was known (i.e., perfect knowledge of the cause of variation
in weed-free yield). The six-parameter model was identical
in form to the process model that generated the SPCE data.
Thus, the only sources of variation, other than weed density,
when using the six-parameter model to fit data, were the
process noise («i) and the fixed site factor (g). The third
scenario included pre–weed management decision precipi-
tation (i.e., March through May accumulated precipitation)
rather than full growing season precipitation in the regres-
sion model (six-parameter model). This scenario represents
a more realistic partial knowledge of the precipitation
amount that will occur in a given growing season when the
EILf would be applied. One hundred trials were conducted
where we drew a random sample from the weather station
records and compared the calculated EILe with EILf (com-
puted from the six-parameter full process model). We also
calculated the mean and standard deviation of the prediction
error of the value of control at the EILf. Thus, the actual
value was equal to the weed control cost by definition. To
examine the accuracy of using our set of SPCEs to predict
the value of weed control, we repeated the whole process
100 times and reported an average mean and an average
standard deviation of the prediction accuracy.

The difference between the SPCEs predicted and the ac-
tual (virtual farm field) value of weed control (when assum-
ing 90% of the weeds were killed by the herbicide for the
calculation of EILf) was recorded. The actual value was the
difference between the true value of the lost yield and the
cost of the herbicide on the virtual farm field using the EILf,
where the true value of the lost yield is known because the
parameter values are known for the virtual farm field.

« 5 [Dŷ (EIL , z ) 2 Dy(EIL , z )]·p [6]i,j i e j f j

where the subscripts i and j refer to a particular set of eight
SPCEs and to a particular draw from the precipitation dis-
tribution, respectively. The quantities Dŷ and Dy are the pre-
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FIGURE 3. Mean bias (inaccuracy) and imprecision (RMSE) of prediction error for the six-parameter model under three competitive scenarios: (1) constant
competitive strength or b1 5 0, (2) b1 , 0, and (3) b1 . 0. Prediction accuracy was assessed using a model parameterized based on eight small-plot
competition experiments and extrapolated to a hypothetical validation plot. The validation procedure was repeated to form a distribution of accuracy
assessments; bias and imprecision were reported because they are the two most informative statistics describing the distribution of prediction error.

dicted (from SPCEs) and true (from virtual farm field) dif-
ferences in yield that occurred when using the control treat-
ment. The difference was defined to be:

Dy(EIL, z) 5 y(0.1·EIL, z) 2 y(EIL, z) [7]

The weed density EIL is the economic threshold or the
density for which the value of yield recouped by application
was equal to the weed control cost (cwc). This is called EILf
when calculated from the virtual farm field data and EILe
when calculated from the SPCEs. It was found by solving
the following equation for EIL:

Dy(EIL, z)·p 5 c [8]wc

The crop price used was $114 t21. The herbicide cost was
$44.48 ha21. Because the threshold depends on the value of
the yield lost, it also depends on all factors that modify the
yield, as well as the crop price and the herbicide cost as
discussed by O’Donovan (1996). For each set of eight SPCE
results, we performed n 5 100 validation trials and reported
the mean error and the standard deviation of the error:

n1
« 5 «Oi i,jn j51

1/2n1 2s 5 (« 2 « ) [9]O« i,j ii [ ]n j51

The subscripts i and j index the sets of eight SPCE and
validation trials, respectively. To know, on average, how ac-
curate the predictions were, we iterated the whole procedure
m 5 100 times and reported the mean bias and the mean
standard deviation. All calculations were performed in
Mathematica (Wolfram Research Inc. 1999).

m m1 1
« 5 « s 5 s [10]O Oi « «im mi51 i51

Results and Discussion

Using the statistics defined in Equation 10, the value of
control at EILe was compared with the value of control at
EILf. The logic behind an EIL-based containment strategy

relies on an estimate of the value of yield recouped by pest
control relative to control cost. Thus, bias and imprecision
or lack of information from predictions (Clark et al. 2001)
provide a solid indication of the potential usefulness of a
predictive strategy. Our investigation compared the relative
values of fitting SPCE data with models of increasing com-
plexity and varied assumptions of knowledge about the pro-
cess causing variation (Table 1). For two of the competitive
scenarios, where competition intensity (i) was uncorrelated
with moisture or negatively correlated with moisture, the
prediction bias was substantially improved by including
moisture in the model. The bias changed from $10 and 6
ha21 to approximately $0 ha21 (Figure 3). Likewise, the im-
precision residual mean square error was decreased to 25 to
40% of three-parameter predictions using the six-parameter
model. Interestingly, when competitive strength was posi-
tively correlated with precipitation (and therefore higher to-
tal yields), there was little change in the bias or precision
with the inclusion of moisture into the process model used
for forecasting the economic benefit of controlling weeds
(Figure 3).

The scatterplots in Figure 4 show predicted EILe (x-axis)
vs. EILf (y-axis). A relationship that could predict without
error would thus produce points on the line with Slope 1
that passes through the origin. Each point within the plots
represents a single validation trial for a relationship param-
eterized from a set of eight SPCEs. Because there were 100
iterations of 100 predictions, there are 104 points on each
plot. If the points accumulated above the 1:1 line, it indi-
cated a systematic underprediction of the EILf, and if they
accumulated below the line, it indicated overprediction.

In all the scatterplots, the predicted and actual thresholds
were higher than the 8 to 10 plants m22 reported in the
literature (Cousens et al. 1986). This was a direct reflection
of the low value (assumed price received) for the wheat crop.
Furthermore, the three-parameter model (Figure 4) was in-
capable of predicting the EILf for any of the scenarios. This
was not surprising because moisture was included in the
process model as a primary determinant of yield used to
calculate the EILf, and the three-parameter model used to
fit the SPCE yields and calculate the EILe did not include
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FIGURE 4. Predicted vs. actual economic injury levels for three different
models under four different competitive scenarios. The three models used
were (A) three-parameter model lacking any explicit dependence on GSP,
(B) six-parameter model with full knowledge of GSP, and (C) six-parameter
model with knowledge of only the first 3 mo of GSP. The scenarios con-
sidered include (1) constant competitive strength or b1 5 0, (2) b1 , 0,
(3) b1 . 0, and (4) b1 5 0 and g 5 0.2. The last scenario examines the
influence of a spatially variable but temporally constant yield perturbation,
termed a fixed site factor.

the influence of precipitation on yield. If decisions were
made using the EILe based on the three-parameter model,
weed control would be applied in many cases where it was
not justified on 1-yr economic grounds. This reflects the
large bias present for both b1 5 0 and b1 , 0 cases (com-
petitive effect a constant or negative function of growing
season precipitation).

The first objective of this study was to examine the effect
of excluding a variable in a predictive schema that was
strongly driving yield response. The large responses shown
in Figure 3, for the first two competitive scenarios, and poor
performance illustrated in Figure 4A (1 to 3) reinforce the
intuitive notion that leaving out major drivers of variation
can cause a major loss of information that is valuable in
forecasting (Clark et al. 2001). Although the performance
using the actual process model itself (Figure 4B, 1 to 3)
shows on average much improved predictive accuracy, the
variance in prediction error remains large. In the case where
the bias was low, six-parameter model for b1 , 0 or b1 5
0, the corresponding standard deviation was $10 to 15 ha21,
which represents 20 to 30% of the value of the weed control
cost. When the decision maker is not privy to full growing
season precipitation information at decision time (Column
C in Figure 4), almost all predictive ability is lost and the

accuracy plots resemble those in column A of Figure 4. Of
particular interest was the addition of a fixed site factor that
degraded the ability for SPCE predictions to be extrapolated
(Figure 4B, 1 to 3, compared with Figure 4B, 4) almost as
much as not having full-season precipitation records (Figures
4B compared with Figures 4C), although the process model
form was entirely correct.

The inclusion of the fixed site factor (e.g., depth to hard-
pan) described in Equation 4 resulted in predictions that
were markedly degraded when compared with the case
where such site factors were not known. After adding the
site factor, the standard deviation of the predicted value of
control increased from $3 to 15 ha21 in the three-parameter
model. When the threshold (EILf) was predicted based on
March to May precipitation, the standard deviation in-
creased from $15 to 21 ha21 with the inclusion of the site
factor in the three-parameter model.

One of the advantages of exploring prediction accuracy
using simulation was that we could explore the effects that
different types of errors had on prediction. The primary
source of error was process noise in the SPCE plot data.
The secondary source of error arose from real-world (sam-
pling) variation of precipitation frequencies. In combina-
tion, these two sources of error alone were sufficient to pro-
duce a prediction error in the EILf for management corre-
sponding to approximately 25% of the value of control ($10
ha21) for the case where knowledge of precipitation influ-
ence on crop yield was limited to the 3 mo before the grow-
ing season that was being predicted. The magnitude of the
SPCE process error (20% variation added to the response
model) was a very conservative estimate of what occurs in
practice and there were many potential sources of variation
that were not included. Thus, 25% error in the value of
weed control may serve as a bound on the potential of pre-
cipitation inclusion in the model to improve accuracy for
the wild oat–wheat system in north-central Montana, that
is, if one had eight experiment station small-plot experi-
ments (a rare scenario), precipitation data from each exper-
iment station, and undertook to improve prediction by add-
ing moisture to the model, then it is very unlikely that the
prediction error could be reduced below 25% of the value
of weed control.

The addition of an unknown site factor was seen to sig-
nificantly degrade prediction, both with and without full
knowledge of the GSP. There are certainly yield-influencing
properties of locations that are relatively constant on the
field scale but vary for a larger geographic region, depth to
hardpan being an important one. In this study, we assumed
that the standard deviation of such an effect was 20%. Pro-
vided that this magnitude is reasonable, there would seem
to be significant improvements in prediction accuracy to be
made by gaining knowledge of such factors. On-farm ex-
perimentation would be one method that could improve our
knowledge of driving factors and subsequent yield predic-
tion.

Adding more SPCEs by conducting more studies over
years or sites could greatly decrease both the bias and the
standard deviation when there is full knowledge of the GSP
(e.g., using 32 SPCE stations and the six-parameter model
decreases the mean bias to 0.08 and the mean standard de-
viation to 1.05) but does little to improve the accuracy of
the EILf when pre–weed management decision precipitation
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rather than full growing season precipitation was used in the
model.

It is easy to add SPCEs in a simulation, but competition
study data are very expensive to collect. One value of this
study lies in demonstrating the potential importance of add-
ing additional studies. Because there is a correlation within
years for weather data (Figure 2), within-year replication
across space does not provide as much independent infor-
mation as replication across time. This finding, in itself,
lends the greatest support for site-specific technology–based
parameterization of decision support models and thus the
greatest ecological justification for this technology.

The number of independent replicate experiments will
vastly increase if site-specific on-farm experimentation ever
reaches the point where producers can conduct it with ease
(i.e., weed abundance is easily and site specifically estimated
and corresponds to yield monitor information). A mecha-
nism to accumulate publicly available site-specific field-scale
data may provide the best information for validation of weed
management strategies based on ecological principles. The
results of our numerical experiments emphasize, in an ex-
tremely general way, that the value of small-plot experiment
station information is not likely to be found in forecasting
prescriptive EBWM. Instead, these results suggest that
small-plot weed ecology experiments may be used best in
the development of first-principle models that can then be
applied to management with on-site parameterization (Max-
well 1999).

There are clearly major barriers preventing precise pre-
diction of effects, demographics, and other ecological phe-
nomena that could improve the ability to manage weeds.
However, as the value of production decreases and the costs
of inputs such as herbicides become a large fraction of gross
returns, economizing by lowering rates or occasionally for-
going the use of weed control may become more of an eco-
nomic necessity than an option. Thus, studies like this that
seek to improve our ability to appropriately apply ecological
knowledge gained through different venues (small plots vs.
farm fields) and suggest how to capitalize on technology may
serve as a guide for future research into the application of
EBWM.
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