How to translate text using browser tools
1 March 2006 Using remote sensing for identification of late-season grass weed patches in wheat
Francisca López-Granados, Montse Jurado-Expósito, Jose M. Peña-Barragán, Luis García-Torres
Author Affiliations +
Abstract

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.

Nomenclature: Wild oat (Avena fatua L. AVEFA and A. sterilis L. AVEST); canarygrass (Phalaris paradoxa L. PHAPA and P. minor Retz PHAMI); ryegrass, Lolium rigidum Gaudin LOLRI; wheat, Triticum durum L. ‘Mexicali.’

Francisca López-Granados, Montse Jurado-Expósito, Jose M. Peña-Barragán, and Luis García-Torres "Using remote sensing for identification of late-season grass weed patches in wheat," Weed Science 54(2), 346-353, (1 March 2006). https://doi.org/10.1043/0043-1745(2006)54[346:URSFIO]2.0.CO;2
Received: 4 May 2005; Accepted: 5 December 2005; Published: 1 March 2006
KEYWORDS
hyperspectral
multispectral
site-specific weed management
vegetation indices
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top