There is no published information on the impact of volunteer barley on wheat yield loss or on the economics of controlling barley with a herbicide. With the registration of imazamox-resistant wheat, it is now possible to control volunteer barley in wheat. Thus, the likelihood of growing wheat in rotation with barley may increase. Field experiments were conducted in 2003 and 2004 at Beaverlodge, Lacombe, and Edmonton, AB, Canada, and Saskatoon, SK, Canada, to determine the impact of volunteer barley on yield of imazamox-resistant spring wheat seeded at relatively low (100 kg ha−1) and high (175 kg ha−1) rates. Barley was seeded at different densities to simulate volunteer barley infestations. Regression analysis indicated that wheat-plant density influenced the effects of volunteer barley interference on wheat yield loss, economic threshold values, and volunteer barley fecundity among locations and years. Economic thresholds varied from as few volunteer barley plants as 3 m−2 at Beaverlodge in 2003 and 2004 to 48 m−2 at Lacombe in 2003. In most cases, wheat yield loss and volunteer barley fecundity were lower and economic thresholds were higher when wheat was seeded at the higher rate. For example, averaged over both years at Beaverlodge initial slope values (percentage of wheat yield loss at low barley density) were 4.5 and 1.7%, and economic threshold values of volunteer barley plants were 3 m−2 and 8 m−2 at low and high wheat seeding rates, respectively. Results indicate that volunteer barley can be highly competitive in wheat, but yield losses and wheat seed contamination due to volunteer barley can be alleviated by seeding wheat at a relatively high rate.
Nomenclature: Barley, Hordeum vulgare L. ‘AC Lacombe’; wheat, Triticum aestivum L. ‘CDC Imagine’.