The development of an integrated weed management (IWM) strategy for control of multiple herbicide-resistant (MHR) waterhemp can provide field crop producers with a strategy to deplete the number of waterhemp seeds in the soil seedbank. Field experiments were established on two commercial farms in Ontario, Canada, with MHR waterhemp in 2017. The number of waterhemp seeds in the seedbank at the Cottam and Walpole Island sites prior to establishing the experiments was 413 and 40 million seeds ha–1, respectively. The goal of this 9-yr study is to document the depletion in the number of waterhemp seeds in the seedbank after Years 3, 6, and 9 (spring 2020, 2023, and 2026) and to identify management practices that can reduce the number of waterhemp seeds by 95% or more. Relative to the number of seeds in the soil seedbank when the experiment was initiated, at the Cottam site after 3 yr of this experiment, in the “control” treatment (continuous soybean seeded in rows spaced 75 apart, and sprayed with glyphosate) there was a numeric 31% increase in the number of waterhemp seeds in the seedbank; in contrast, in the three-crop rotation of corn/soybean/winter wheat (with or without a cover crop after winter wheat harvest), soybean seeded in rows spaced 37.5 cm apart, with herbicide applications using a total of eight different herbicide modes of action resulted in a 65% to 66% decrease in the number of waterhemp seeds in the soil seedbank. At the Walpole Island site after 3 yr of this experiment, the number of waterhemp seeds in the seedbank was not affected by the IWM programs evaluated. Results indicate that a diversified integrated waterhemp management program dramatically decreased the number of waterhemp seeds in the seedbank at one of two sites.
Nomenclature: Waterhemp, Amaranthus tuberculatus (Moq.) Sauer.; corn; Zea mays L.; soybean; Glycine max L. Merr.; wheat, Triticum aestivum L.