Georgia growers can benefit from double-cropping grain sorghum following watermelon to maximize land use and add economic value to their operations. However, capitalizing on the economic advantages of harvesting two crops within a single season must account for potential herbicide injury to rotational crops. An integrated weed management strategy that includes a preplant application of fomesafen and terbacil is recommended for weed control in watermelon production systems. However, currently labeled plant-back restrictions for grain sorghum require a minimum of 10 and 24 mo for fomesafen and terbacil, respectively. Therefore this research aimed to determine the tolerance of grain sorghum to fomesafen and terbacil following soil applications applied 90 to 100 d before planting (DBP). Experiments were conducted at the University of Georgia Ponder Research Farm from 2019 to 2023. The experimental design was a randomized complete block with four replicates. Five rates of fomesafen (35, 70, 140, 210, and 280 g ai ha-1), four rates of terbacil (3.5, 7.0, 10.5, and 14.0 g ai ha-1), and a nontreated control were evaluated. In 2019, fomesafen caused significant sorghum leaf necrosis, plant density reductions, height reductions, and yield reductions of at least 16%, especially when applied at rates ≥ 210 g ai ha-1. Terbacil had little to no effect on sorghum injury, density, height, or yield in any year. These results suggest that sorghum has sufficient tolerance to terbacil when applied 90 to 100 DBP. In four of five years, sorghum had an acceptable tolerance to fomesafen when applied 90 to 100 DBP. However, yield losses observed in 2019 suggest that caution should be taken when fomesafen is applied 90 to 100 DBP grain sorghum at ≥ 210 g ai ha-1.
Nomenclature: Fomesafen; terbacil; grain sorghum; Sorghum bicolor (L.) Moench; watermelon; Citrullus lanatus (Thunb.) Matsum. & Nakai