Translator Disclaimer
1 June 2006 The concept of overgrazing and its role in management of large herbivores
Author Affiliations +

Increasing populations of cervids in Europe and North America have made the issue of overgrazing relevant outside areas with domestic or semi-domestic herbivores. Over grazing is defined depending on management objectives. I focus on challenges related to implementing a ‘range ecologist’ baseline, defining overgrazing as situations when ‘forage species are not able to maintain themselves over time due to an excess of herbivory or related processes’. Herbivores may be naturally regulated at ecological carrying capacity (K) with no overgrazing, but overgrazing may occur below K. Rare, preferred plant species can decline in density due to a ‘herbivore pit’ created by generalist herbivores, without having much effect on K. The concept of overgrazing is almost meaningless unless the issue of spatial scale is considered, and the extent to which preferred plant species decline in coverage. Herbivore population instability increases with increased population growth rate, but overgrazing depends also on the tolerance to grazing of the forage used by a given herbivore, which is closely related to functional plant traits. Ecosystem factors such as soil quality and slope also affect the likelihood that overgrazing will occur. Currently we can only qualitatively identify some important factors to consider. A better understanding of the sequence of events happening to performance of both animals and plants over time when a herbivore population increases provides a very useful approach until tools are developed to measure overgrazing quantitatively. More detailed knowledge about grazing effects on biodiversity is necessary to implement a broader ecosystem perspective of overgrazing.

Atle Mysterud "The concept of overgrazing and its role in management of large herbivores," Wildlife Biology 12(2), 129-141, (1 June 2006).[129:TCOOAI]2.0.CO;2
Received: 4 March 2003; Accepted: 1 November 2004; Published: 1 June 2006

Back to Top