Open Access
How to translate text using browser tools
4 January 2010 Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family
Bastian Schäferhoff, Kai F. Müller, Thomas Borsch
Author Affiliations +
Abstract

The Caryophyllales are one of the major lineages of angiosperms, including some 12 000 species and well known families such as Amaranthaceae, Cactaceae, Caryophyllaceae, Droseraceae, Nyctaginaceae and Polygonaceae. Phylogenetic hypotheses based on molecular characters have led to their circumscription and have considerably improved our understanding of interfamilial relationships. For this study, we generated a data set of the non-coding and rapidly evolving chloroplast petB-petD region, consisting of a transcribed spacer and a group II intron for 87 taxa of Caryophyllales and 22 outgroups. In addition, we analysed a complementary matK data set with complete sequences of the coding region. Trees obtained from both markers were well resolved and especially petD data yielded a well supported backbone for the Caryophyllales. The order is constituted by two sister clades, caryophyllids and polygonids, the latter containing a carnivorous subclade. Both Molluginaceae and Phytolaccaceae had been considered as polyphyletic, but not as severely as is now evident from this study with improved taxon sampling. As a great surprise, the hitherto unsampled genus Microtea is found with high support in an isolated position as the fourth branch in the caryophyllid clade. On the other hand, Lophiocarpus as the second genus of the Phytolaccaceae subfamily Microteoideae is sister to an Aizoaceae-Nyctaginaceae-Phytolaccaceae lineage. In line with their morphological distinctness, Microteaceae are described as a new family. Our data further resolve a distinct Mollugo clade, whereas Hypertelis appears to have affinities with Limeum, suggesting an expanded Limeaceae.

See the PDF.

References

1.

V. A. Albert , S. E. Williams & M. W. Chase 1992: Carnivorous plants. Phylogeny and structural evolution. —  Science 257: 1491–1495.  CrossRef  Google Scholar

2.

APG III 2009: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. — Bot. J. Linn. Soc. 161: 105–121.  CrossRef  Google Scholar

3.

W. L. Applequist & R. S. Wallace 2001: Phylogeny of the portulacaceous cohort based on ndhF sequence data. — Syst. Bot. 26: 406–419. Google Scholar

4.

W. L. Applequist & R. S. Wallace 2003. Expanded circumscription of Didiereaceae and its division into three subfamilies. — Adansonia 25: 13–16. Google Scholar

5.

W. L. Applequist , W. L. Wagner , E. A. Zimmer & M. Nepokroeff 2006: Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). —  Syst. Bot. 31: 310–319.  CrossRef  Google Scholar

6.

H. G. Bedell 1980: A taxonomic and morphological re-evaluation of Stegnospermaceae (Caryophyllaceous). —  Syst. Bot. 5: 419–431.  CrossRef Google Scholar

7.

H.-D. Behnke 1993: Further studies of the sieve-element plastids of the Caryophyllaceous including Barbeuia, Corrigiola, Lyallia, Microtea, Sarcobatus and Telephium. —  Pl. Syst. Evol. 186: 231–243.  CrossRef  Google Scholar

8.

H.-D. Behnke 1994: Sieve-element plastids: their significance for the evolution and systematics of the order. — Pp. 87–121 in: H. D. Behnke & T. J. Mabry (ed.), Caryophyllales. Evolution and systematics. — Berlin. Google Scholar

9.

H.-D. Behnke 1997: Sarcobataceae — a new family of Caryophyllaceous. — Taxon 46: 495–507.  CrossRef  Google Scholar

10.

T. Borsch , K. W. Hilu , D. Quandt , V. Wilde , C. Neinhuis & W. Barthlott 2003: Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. —  J. Evol. Biol. 16: 558–576.  CrossRef  Google Scholar

11.

A. Braun 1864: Übersicht des natürlichen Systems nach der Anordnung desselben. — Pp. 22–67 in: P. Ascherson (ed.), Flora der Provinz Brandenburg, der Altmark und des Herzogthums Magdeburg 1. — Berlin. Google Scholar

12.

S. F. Brockington , R. Alexandre , J. Ramdial , M. J. Moore , S. Crawley , A. Dhingra , K. Hilu , D. S. Soltis & P. S. Soltis 2009: Phylogeny of the Caryophyllaceous sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllaceous. — Int. J. Pl. Sci. 170: 627–643.  CrossRef  Google Scholar

13.

M. W. Chase , D. E. Soltis , R. G. Olmstead , D. Morgan , D. H. Les , B. D. Mishler , M. R. Duvall , R. A. Price , H. G. Hills , Y.-L. Qiu , K. A. Kron , J. H. Rettig , E. Conti , J. D. Palmer , J. R. Manhart , K. J. Sytsma , H. J. Michaels , W. J. Kress , K. G. Karol , W. D. Clark , M. Hedén , B. S. Gaut , R. K. Jansen , K.-J. Kim , C. F. Wimpee , J. F. Smith , G. R. Fumier , S. H. Strauss , Q. Xiang , G. M. Plunkett , P. S. Soltis , S. Swensen , S. E. Williams , P. A. Gadek , C. J. Quinn , L. E. Eguiarte , E. Goldenberg , G. H. Learn , S. W. Graham , S. C. H. Barrett , S. Dayanandan & V. A. Albert 1993: Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. —  Ann. Missouri Bot. Gard. 80: 528–581.  CrossRef  Google Scholar

14.

J. S. Clement & T. J. Mabry 1996a: Chloroplast DNA evidence and family-level relationships in the Caryophyllaceous. — Amer J. Bot. 83 (suppl.): 143. Google Scholar

15.

J. S. Clement & T. J. Mabry 1996b: Pigment evolution in the Caryophyllaceous: a systematic overview. —  Bot. Acta 109: 360–367. Google Scholar

16.

A. Cronquist 1988: An integrated system of cassification of flowering plants. — New York. Google Scholar

17.

A. Cronquist & R. F. Thorne 1994: Nomenclatural and taxonomic history. — Pp. 5–25 in: H. D. Behnke & T. J. Mabry , Caryophyllaceous. Evolution and systematics. — Berlin. Google Scholar

18.

P. Cuénoud , V. Avellanen , L. W. Chatrou , M. Powell , R. J. Grayer & M. W. Chase 2002: Molecular phylogenetics of Caryophyllaceous based on nuclear 18S rDNA and plastid rbcL, atoP, and matK DNA sequences. —  Amer. J. Bot. 89: 132–144.  CrossRef  Google Scholar

19.

R. Dahlgren 1980: A revised system of classification of the angiosperms. —  Bot. J. Linn. Soc. 80: 91–124.  CrossRef  Google Scholar

20.

A. Doweld & J. L. Reveal 2008: New suprageneric names of vascular plants. — Phytologia 90: 416–417. Google Scholar

21.

S. R. Downie & J. D. Palmer 1994: A chloroplast DNA phylogeny of the Caryophyllaceous based on structural and inverted repeat restriction site variation. —  Syst. Bot. 19: 236–252.  CrossRef  Google Scholar

22.

S. R. Downie , D. S. Katz-Downie & K. Cho 1997: Relationships in the Caryophyllaceous as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. —  Amer. J. Bot. 84: 253–273.  CrossRef  Google Scholar

23.

T. Eckardt 1954: Morphologische und systematische Auswertung der Placentacion von Phytolaccaceae. — Ber. Deutsch. Bot. Ges. 67: 113–129. Google Scholar

24.

T. Eckardt 1964: Reihe Centrospermae. — Pp. 79–102 in: H. Melchior (ed.), A. Engler's Syllabus der Pflanzenfamilien, ed. 2, 2. — Berlin. Google Scholar

25.

T. Eckardt 1974: Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcs. — Phyton (Horn) 16: 13–27. Google Scholar

26.

F. Ehrendorfer 1976: Closing remarks: systematics and evolution of centrospermous families. —  Pl. Syst. Evol. 126: 99–106.  CrossRef  Google Scholar

27.

A. Eichler 1875–78: Blüthendiagramme 1–2. — Leipzig. Google Scholar

28.

M. A. Endress & V. Bittrich 1993: Molluginaceae. — Pp. 419–426 in: K. Kubitzki (ed.). Families and genera of vascular plants. — Berlin, etc. Google Scholar

29.

D. E. Giannasi , G. Zurawski , G. Learn & M. T. Clegg 1992: Evolutionary relationships of the Caryophyllidae based on comparative rbcL sequences. —  Syst. Bot. 17: 1–15.  CrossRef  Google Scholar

30.

A. Heimerl 1934: Phytolaccaceae. — Pp. 135–164 in: A. Engler & K. Prantl (ed.), Die natürlichen Pflanzenfamilien, ed. 2, 16c. — Leipzig & Berlin. Google Scholar

31.

K. W. Hilu , T. Borsch , K. Müller , D. E. Soltis , P. S. Soltis , V. Avellanen , M.W. Chase , M. P. Powell , L. A. Alice , R. Evans , H. Sauquet , C. Neinhuis , T. A. B. Slotta , J. G. Rohwer , C. S. Campbell & L. W. Chatrou 2003: Angiosperm phylogeny based on matK sequence information. —  Amer. J. Bot. 90: 1758–1776.  CrossRef  Google Scholar

32.

G. Kadereit , T. Borsch , K. Weising & H. Freitag 2003: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. —  Int. J. Pl. Sci. 164: 959–986.  CrossRef  Google Scholar

33.

C. Löhne & T. Borsch 2005: Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. —  Molec. Biol. Evol. 22: 317–332.  CrossRef  Google Scholar

34.

J. R. Manhart & J. H. Rettig 1994. Gene sequence data. — Pp. 235–246 in: H. D. Behnke & T. J. Mabry , Caryophyllaceous. Evolution and systematics. — Berlin, etc. Google Scholar

35.

M. S. Marchioretto & J. C. de Siqueira 1998: Espécies endêmicas do Rio Grande do Sul (Angiospermas-Dicotiledôneas): Estudo dos padrões de distribuição geográfica. — Pesq., Bot. 48: 111–144. Google Scholar

36.

H. Meimberg , P. Dittrich , G. Bringmann , J. Schlauer & G. Heubl 2000: Molecular phylogeny of Caryophyllidae s.l. based on matK sequences with special emphasis on carnivorous taxa. — Pl. Biol. 2: 218–228.  CrossRef  Google Scholar

37.

C. H. B. A. Moquin-Tandon 1849: Phytolaccaceae. — Pp. 2–40, 459–460 in: A. P. de Candolle (ed.), Prodromus systematis naturalis regni vegetabilis 13. — Paris. Google Scholar

38.

J. Müller , K. Müller , C. Neinhuis & D. Quandt 2005+: PhyDE: Phylogenetic Data Editor. — Published at  http:\\www.phyde.de  Google Scholar

39.

K. Müller 2004: PRAP, computation of Bremer support for large data sets. —  Molec. Phylogenet. Evol. 31: 780–782.  CrossRef  Google Scholar

40.

K. Müller & T. Borsch 2005: Phylogenetics of Amaranthaceae based on matK/trnK sequence data. Evidence from parsimony, likelihood, and Bayesian analyses. — Ann. Missouri Bot. Gard. 92: 66–102. Google Scholar

41.

K. Müller 2006: Incorporating information from length-mutational events into phylogenetic analysis. —  Molec. Phylogenet. Evol. 38: 667–676.  CrossRef  Google Scholar

42.

K. Müller , T. Borsch & K. W. Hilu 2006: Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. —  Molec. Phylogenet. Evol. 41: 99–117.  CrossRef  Google Scholar

43.

T. Nakai 1942: Notulae ad plantas Asiae orientalis XVIII. J. Jap. Bot. 18: 91–120. Google Scholar

44.

O. I. Nandi , M. W. Chase & P. K. Endress 1998: A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. —  Ann. Missouri Bot. Gard. 85: 137–214.  CrossRef  Google Scholar

45.

J. W. Nowicke 1968: Palynotaxonomic study of the Phytolaccaceae. — Ann. Missouri Bot. Gard. 66: 997–1005. Google Scholar

46.

R. Nyffeler 2007: The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. —  Amer. J. Bot. 94: 89–101.  CrossRef  Google Scholar

47.

R. Nyffeler & U. Eggli ( in press): Disintegrating Portulacaceae — a new familial classification of the suborder Portulacineae (Caryophyllaceous) based in molecular and morphological evidence. — Taxon. Google Scholar

48.

J. H. Rettig , H. D. Wilson & J. R. Manhart 1992: Phylogeny of the Caryophyllaceous — gene sequence data. —  Taxon 41: 201–209.  CrossRef  Google Scholar

49.

J. E. Rodman 1994: Cladistic and phenetic studies. — Pp. 279–301 in: H. D. Behnke & T. J. Mabry , Caryophyllaceous. Evolution and systematics. — Berlin. Google Scholar

50.

J. G. Rohwer 1993: Phytolaccaceae. — Pp. 506–515 in: K. Kubitzki , J. G. Rohwer & V. Bittrich (volume ed.), Families and genera of vascular plants 2. — Berlin, etc. Google Scholar

51.

F. Ronquist & J. P. Huelsenbeck 2003: MrBayes 3: Bayesian phylogenetic inference under mixed models. —  Bioinformatics 19: 1572–1574.  CrossRef  Google Scholar

52.

V. Savolainen , M. W. Chase , S. B. Hoot , C. M. Morton , D. E. Soltis , C. Bayer , M. F. Fay , A. Y. de Bruijn , S. Sullivan & Y.-L. Qiu 2000a: Phylogenetics of flowering plants based on combined analysis of plastid atoP and rbcL gene sequences. —  Syst. Biol. 49: 306–362.  CrossRef  Google Scholar

53.

V. Savolainen , M. F Fay , D. C. Albach , A. Backlund , M. van der Bank , K. M. Cameron , S. A. Johnson , M. D. Lledó , J. C. Pintaud , M. Powell , M. C. Sheahan , D. E. Soltis , P. S. Soltis , P Weston , W. M. Whitten , K. J. Wurdack & M. W. Chase 2000b: Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. —  Kew Bull. 55: 257–309.  CrossRef  Google Scholar

54.

D. E. Soltis , P. S. Soltis , M. W. Chase , M. E. Mort , D. C. Albach , M. Zanis , V. Avellanen , W. H. Hahn , S. B. Hoot , M. F. Fay , M. Axteil , S. M. Swensen , L. M. Prince , W. J. Kress , K. C. Nixon & J. S. Farris 2000: Angiosperm phylogeny inferred from 18S rDNA, rbcL and atoP sequences. —  Bot. J. Linn. Soc. 133: 381–461. Google Scholar

55.

H. A. Stafford 1994: Anthocyanins and betalains: evolution of the mutually exclusive pathways. — Pl. Sci. 101: 91–98.  CrossRef  Google Scholar

56.

D. L. Swofford 1998: PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). — Sunderland, Mass. Google Scholar

57.

A. Tartajean 1997: Diversity and classification of flowering plants. — New York. Google Scholar

58.

R. F. Thorne 1992: An updated phylogenetic classification of flowering plants. — Aliso 13: 365–389. Google Scholar

59.

I. Urban 1885: Über den Blütenbau von Microtea. — Ber. Deutsch. Bot. Ges. 3: 324–332. Google Scholar

60.

S. Wicke & D. Quandt ( in press): Universal primers for the amplification of the plastid trnK/matK region in land plants. — Anales Jard. Bot. Madrid. Google Scholar

61.

A. Worberg , D. Quandt , A. M. Barniske , C. Löhne , K. W. Hilu , T. Borsch 2007: Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. — Organisms Diversity Evol. 7: 55–77.  CrossRef Google Scholar

62.

A. Worberg , M. H. Alford , D. Quandt & T. Borsch 2009: Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrotetia and Tapiscia. —  Taxon 58: 468–478. Google Scholar
© 2009 BGBM Berlin-Dahlem.
Bastian Schäferhoff, Kai F. Müller, and Thomas Borsch "Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family," Willdenowia 39(2), 209-228, (4 January 2010). https://doi.org/10.3372/wi.39.39201
Published: 4 January 2010
KEYWORDS
angiosperm classification
eudicots
matK
molecular phylogeny
neotropical plant families
petD
Back to Top