Pfeiffera is a genus of epiphytic, terrestrial and epilithic cacti. Its acceptance, circumscription and closest relatives have been debated. In the context of a phylogenetic survey of epiphytic cacti, we have studied relationships in Pfeiffera, sampling eight of nine species and using sequence data from three group II introns (trnK, rpl16, trnG), four intergenic spacers (psbA-trnH, trnQ-rpsl6, rps3-rpl16, trnS-trnG) and the rapidly evolving gene matK of the plastid genome. Phylogenetic analyses revealed Pfeiffera to be polyphyletic, comprising two unrelated lineages, both highly supported. One clade includes the type species, P. ianthothele; the second contains two Pfeiffera and an erstwhile Lepismium species. Our results justify generic status for this newly found clade. Since it includes the type species of the earlier-proposed monotypic genus Lymanbensonia, we suggest the reinstatement of the latter in an amplified circumscription. The necessary new combinations for Pfeiffera brevispina and Lepismium incachacanum are provided. Our results further support the establishment of a separate tribe Lymanbensonieae, formally proposed here, to contain Lymanbensonia and Calymmanthium. The phylogenetic results imply that epiphytism evolved more frequently in Cactaceae than hitherto assumed and further show that morphological convergences in the family can be extreme. An integrated approach using morphology and sequence data is therefore needed to establish sound generic limits in the Cactaceae.
Translator Disclaimer
S. Arias
,
T. Terrazas
&
K. Cameron
2003: Phylogenetic analysis of Pachycereus (Cactaceae, Pachycereeae) based on chloroplast and nuclear DNA sequences. — Syst. Bot. 28: 547–557. Google Scholar
S. Arias
,
T. Terrazas
,
H. J. Arreola-Nava
,
M. Vazquez-Sanchez
&
K. M. Cameron
2005: Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. — J. Pl. Res. 118: 317–328. [
CrossRef
] Google Scholar
C. Backeberg
1959: Die Cactaceae. Handbuch der Kakteenkunde 2. — Jena: Gustav Fischer. Google Scholar
W. Barthlott
1988: Über die systematische Gliederung der Cactaceae. — Beitr. Biol. Pflanzen 63: 17–40. Google Scholar
W. Barthlott
&
D. Hunt
1993:
Cactaceae. — Pp. 161–197 in:
K. Kubitzki
(ed.), The families and genera of vascular plants 2. — Berlin: Springer. Google Scholar
W. Barthlott
&
W. Rauh
1987:
Pfeiffera miyagawae, a new orange flowered species from Bolivia. — Cact. Suce. J. (Los Angeles) 59: 63–65. Google Scholar
W. Barthlott
&
N. P. Taylor
1995: Notes towards a monograph of Rhipsalideae (Cactaceae). — Bradleya 13: 43–79. Google Scholar
T. Borsch
&
D. Quandt
2009: Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. —
Pl. Syst. Evol.
282: 169–199. [
CrossRef
] Google Scholar
T. Borsch
,
K. W. Hilu
,
D. Quandt
,
V. Wilde
,
C. Neinhuis
&
W. Barthlott
2003: Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. —
J. Evol. Biol.
16: 558–576. [
CrossRef
] Google Scholar
N. L. Britton
&
J. N. Rose
1923: The Cactaceae. Descriptions and illustrations of plants of the cactus family 4. — Washington: Carnegie Institution. Google Scholar
C. A. Butterworth
&
R. S. Wallace
2004: Phylogenetic studies of Mammillaria (Cactaceae) – insights from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. —
Amer. J. Bot.
91: 1086–1098. [
CrossRef
] Google Scholar
C. A. Butterworth
&
R. S. Wallace
2005: Molecular phylogenetics of the leafy cactus genus Pereskia (Cactaceae). —
Syst. Bot.
30: 800–808. [
CrossRef
] Google Scholar
C. A. Butterworth
,
J. H. Cota-Sanchez
&
R. S. Wallace
2002: Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. — Syst. Bot. 27: 257–270. Google Scholar
F. Buxbaum
1962: Das phylogenetische System der Cactaceae. — Unpaged in:
H. Krainz
(ed.). Die Kakteen 8. — Stuttgart: Kosmos. Google Scholar
F. Buxbaum
1967: Der gegenwärtige Stand der stammesgeschichtlichen Erforschung der Kakteen. — Kakteen Sukk. 18: 6–9. Google Scholar
F. Buxbaum
1971: Gattung Pfeiffera. – Unpaged in:
H. Krainz
(ed.), Die Kakteen 4. — Stuttgart: Kosmos. Google Scholar
A. P. de Candolle
1828: Prodromus systematis naturalis regni vegetabilis 3. — Paris: Treuttel & Wuertz. Google Scholar
D. S. Devey
,
M. W. Chase
&
J. J. Clarkson
2009: A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non-coding plastid regions. —
Taxon
58: 7–15. Google Scholar
E. J. Edwards
,
R. Nyffeler
&
M. J. Donoghue
2005: Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. —
Amer. J. Bot.
92: 1177–1188. Google Scholar
D. Edwards
,
A. Horn
,
D. Taylor
,
V. Savolainen
&
J. A. Hawkins
2008: DNA barcoding of a large genus, Aspalathus L. (Fabaceae). —
Taxon
57: 1317–1327. [
CrossRef
] Google Scholar
P. Erixon
&
B. Oxelman
2008: Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)?
—
Mol. Phylogenet. Evol.
48: 313–325. [
CrossRef
] Google Scholar
F. W. Ganong
1898: Contributions to a knowledge of the morphology and ecology of the Cactaceae: II. The comparative morphology of the embryos and seedlings. — Ann. Bot. 12: 423–474. Google Scholar
A. Gibson
&
P. S. Nobel
1986: The cactus primer. — Cambridge: Harvard University. Google Scholar
K. W. Hilu
&
H. P. Liang
1997: The matK gene: sequence variation and application in plant systematics. —
Amer. J. Bot.
84: 830–839. [
CrossRef
] Google Scholar
J. P. Huelsenbeck
&
F. Ronquist
2001: MrBayes: Bayesian inference of phylogenetic trees. —
Bioinformatics
17: 754–755. [
CrossRef
] Google Scholar
D. Hunt
1998: CCI Workshop at Milborne Port, 5–8 April 1998. — Cactaceae Consensus Init. 5: 1–4. Google Scholar
D. Hunt
&
N Taylor
(ed.) 2002: Notulae systematicae Lexicon Cactacearum spectantes II. — Cactaceae Syst. Init. 14: 7–19. Google Scholar
P. L. Ibisch
,
M. Kessler
,
S. Nowicki
&
W. Barthlott
2000: Ecology, biogeography and diversitiy of the Bolivian epiphytic cacti, with the description of two new taxa. — Bradleya 18: 2–30. Google Scholar
L. A. Johnson
&
D. E. Soltis
1995: Phylogenetic inference in Saxifragaceae s.str. and Gilia (Polemoniaceae) using matK sequences. —
Ann. Missouri Bot. Gard.
82: 149–175. [
CrossRef
] Google Scholar
S. A. Kelchner
2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. —
Ann. Missouri Bot. Gard.
87: 482–498. [
CrossRef
] Google Scholar
M. Kimnach
1983: A revision of Acanthorhipsalis. – Cact. Succ. J. (Los Angeles) 55: 177–182. Google Scholar
M. Kimnach
1984:
Rhipsalis brevispina. — Cact. Succ. J. (Los Angeles) 56: 122–124. Google Scholar
W. J. Kress
1989: The systematic distribution of vascular epiphytes. — Pp. 234–261 in:
U. Lüttge
(ed.), Vascular plants as epiphytes. — Berlin: Springer. Google Scholar
W. J. Kress
,
K. J. Wurdack
,
E. A. Zimmer
,
L. A. Weigt
&
D. H. Janzen
2005: Use of DNA barcodes to identify flowering plants. —
Proc. Natl. Acad Sci. USA
102: 8369–8374. [
CrossRrf
] Google Scholar
C. Löhne
&
T. Borsch
2005: Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. —
Mol. Biol. Evol.
22: 317–332. [
CrossRef
] Google Scholar
C. Löhne
,
T. Borsch
&
J. H. Wiersema
2007: Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. — Bot. J. Linn. Soc. 154: 141–163. [
CrossRef
] Google Scholar
J. McNeill
,
F. R. Barrie
,
H. M. Burdet
,
V. Demoulin
,
D. L. Hawksworth
,
K. Marhold
,
D. H. Nicolson
,
J. Prado
,
P. C. Silva
,
J. E. Skog
,
J. H. Wiersema
&
N. J. Turland
(ed.) 2006: International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. — Regnum Veg. 146. Google Scholar
D. H. Mathews
,
M. Zuker
&
D. H. Turner
1996+: RNAstructure 5.0. — Published at http://rna.urmc.rochester.edu/RNAstructure.html
. Google Scholar
D. Metzing
&
R. Kiesling
2008: The study of cactus evolution: the pre-DNA era. — Haseltonia 14: 6–25. Google Scholar
K. Müller
2004: PRAP, computation of Bremer support for large data sets. —
Molec. Phylogenet. Evol.
31: 780–782. [
CrossRef
] Google Scholar
K. Müller
2005a: The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. — BMC Evol. Biol. 5: 58. [
CrossRef
] Google Scholar
K. Müller
2005b: SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. —
Appl. Bio-informatics
4: 65–69. Google Scholar
K. Müller
&
T. Borsch
2005: Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from Parsimony, Likelihood and Bayesian analyses. — Ann. Missouri Bot. Gard. 92: 66–102. Google Scholar
J. Müller
,
K. Müller
,
C. Neinhuis
&
D. Quandt
2005+: PhyDE: Phylogenetic Data Editor. — Published at www.phyde.de
. Google Scholar
R. Nyffeler
2000: Should Pfeiffera be resurrected? — Cactaceae Syst. Init. 10: 10–11. Google Scholar
R. Nyffeler
2002: Phylogenetic relationships in the cactus family f Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. —
Amer. J. Bot.
89: 312–326. [
CrossRef
] Google Scholar
D. Posada
2008: jModelTest: phylogenetic model averaging. —
Mol. Biol. Evol.
25: 1253–1256. Google Scholar
D. Quandt
&
M. Stech
2004: Molecular evolution and phylogenetic utility of the chloroplast trnT-trnF region in bryophytes. —
Pl. Biol.
6: 545–554. [
CrossRef
] Google Scholar
D. Quandt
,
K. Müller
&
S. Huttunen
2003: Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. — Pl. Biol. 5: 400–410. [
CrossRef
] Google Scholar
A. Rambaut
&
A. J. Drummond
2007: Tracer v1.5. — Published at http://beast.bio.ed.ac.uk/Tracer
Google Scholar
C. M. Ritz
,
L. Martinss
,
R. Mecklenburg
,
V. Goremykin
&
F. H. Hellwig
2007: The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. —
Amer. J. Bot.
94: 1321–1332. [
CrossRef
] Google Scholar
J. Salm-Dyck
1845:
Cacteae in Horto Dyckensi cultae anno 1844. — Paris: Crapelet. Google Scholar
J. Salm-Dyck
1850:
Cacteae in Horto Dyckensi cultae, anno 1849. — Bonn: Henry & Cohen. Google Scholar
K. M. Schumann
1899: Gesamtbeschreibung der Kakteen (Monographia Cactacearum). — Neudamm: Neumann. Google Scholar
J. Shaw
,
E. B. Lickey
,
E. E. Schilling
&
R. L. Small
2007: Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. —
Amer. J. Bot.
94: 275–288. [
CrossRef
] Google Scholar
J. Shaw
,
E. B. Lickey
,
J. T. Beck
,
S. B. Farmer
,
W. Liu
,
J. Miller
,
K. C. Siripun
,
C. T. Winder
,
E. E. Schilling
&
R. L. Small
2005: The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. —
Amer. J. Bot.
92: 142–166. [
CrossRef
] Google Scholar
M. P. Simmons
&
H. Ochoterena
2000: Gaps as characters in sequence-based phylogenetic analyses. — Syst. Biol. 49: 369–381. [
CrossRef
] Google Scholar
B. Stöver
&
K. Müller
2010: TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. — BMC Bioinformatics 11: 7. [
CrossRef
] Google Scholar
D. L. Swofford
1998: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). — Sunderland, Massachussets: Sinauer. Google Scholar
K. Tesfaye
,
T. Borsch
,
K. Covers
&
E. Bekele
2007: Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. —
Genome
50: 1112–1129. [
CrossRef
] Google Scholar
F. Vaupel
1925–26: Die Kakteen. Monographie der Cactaceae. — Berlin: Selbstverlag. Google Scholar
R. S. Wallace
1995: Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. — Bradleya 13: 1–12. Google Scholar
R. S. Wallace
&
A. C. Gibson
2002: Evolution and systematics. — Pp. 1–21 in:
P. S. Nobel
(ed.), Cacti. Biology and uses. — Berkeley: University of California. Google Scholar
S. Wicke
&
D. Quandt
2009: Universal primers for the amplification of the plastid trnK/matK region in land plants. — Anales Jard Bot. Madrid. 66: 285–288. [
CrossRef
] Google Scholar
A. Worberg
2009: Non-coding and fast-evolving chloroplast genomic regions and their utility for reconstructing evolutionary relationships among eudicots: towards resolving the radiation of the rosids. — PhD. Thesis, Nees Institute for Biodiversity of Plants, University of Bonn. Google Scholar

Willdenowia
Vol. 40 • No. 2
Dec 2010
Vol. 40 • No. 2
Dec 2010
Calymmanthium
convergence
Echinocereeae
epiphytism
Lepismium
molecular
phylogenetics