Taxonomic study on the Greek endemic genus Hymenonema (Asteraceae: Cichorieae), using morphological and karyological traits

Authors: Eleni Liveri, Pepy Bareka, and Georgia Kamari
Source: Willdenowia, 48(1) : 5-21
Published By: Botanic Garden and Botanical Museum Berlin (BGBM)
URL: https://doi.org/10.3372/wi.48.48101
ELENI LIVERI1, PEPE BAREKA2 & GEORGIA KAMARI1*

Taxonomic study on the Greek endemic genus *Hymenonema* (*Asteraceae: Cichorieae*), using morphological and karyological traits

Abstract: *Hymenonema* is a Greek endemic genus consisting of two species, *H. laconicum* and *H. graecum*, occurring in the lowlands of S Peloponnisos and on most of the C Aegean islands, respectively. Morphological investigation of 20 gatherings covering the entire distribution range revealed clear morphological differences between the two species, mainly in pappus, achenes, anther tube, ligules and basal leaf characters. A corresponding emended identification key to the species is given. Karyological investigation of 11 accessions included karyotypes, idiograms and karyological indices for both species. Six karyomorphological parameters were also statistically analysed. Populations with intermediate morphological characters between the two species are recorded for the first time and their relationship with the typical two species is discussed. The geographical distribution of the genus is mapped and doubtful locations are commented on. The cytotaxonomic data and the geographical distribution of the species support the characterization of *H. laconicum* and *H. graecum* as schizoendemics. The conservation status of both species is suggested as Vulnerable (VU) according to IUCN criteria.

Key words: *Asteraceae*, chromosome numbers, *Cichorieae*, *Compositae*, distribution, endemism, Greece, *Hymenonema*, karyotype analysis, plant morphology, taxonomy

Article history: Received 14 July 2017; peer-review completed 16 October 2017; received in revised form 10 November 2017; accepted for publication 15 November 2017.

Citation: Liveri E., Bareka P. & Kamari G. 2018: Taxonomic study on the Greek endemic genus *Hymenonema* (*Asteraceae: Cichorieae*), using morphological and karyological traits. – Willdenowia 48: 5–21. doi: https://doi.org/10.3372/wi.48.48101

Introduction

Hymenonema Cass. is one of the seven endemic genera of Greece and the only one that consists of two species, while the rest are monotypic: *Horstrissea dolinicola* Greuter & al. (*Apiaceae*), *Jankaea heldreichii* (Boiss.) Boiss. (*Gesneriaceae*), *Lutchiacretica* (L.) Greuter & Burdet (*Brassicaceae*), *Petromarula pinnata* A. DC. (*Campanulaceae*), *Phitosia crocifolia* (Boiss. & Heldr.) Kamari & Greuter (*Asteraceae*) and *Thamnosciadium jugceum* (Sm.) Hartvig (*Asteraceae*) (Phitos & Kamari 2009). *Leptoplax emarginata* (Boiss.) O. E. Schulz was treated as a Greek endemic genus by Phitos & Kamari (2009), but was more recently included in *Bornmuellera* Hausskn. (Rešetnik & al. 2013).

Hymenonema laconicum Boiss. & Heldr. occurs in the lowlands of S Peloponnisos and *H. graecum* DC. on most of the C Aegean islands (Fig. 1). A record for *H. graecum* from NW Kriti (Crete) (Zaffran 1990: 331) has not recently been reconfirmed. The systematic classification of *Hymenonema* at the taxonomic level of family and tribe has not changed since the first description of the genus. It was classified by Cassini (1817) in the family *Asteraceae* and in the tribe *Cichorieae* (= *Lactuceae*).
At subtribal rank, *Hymenonema* was placed by Stebbins (1953) in the *Cichorinae* together with the genera *Arno-seris* Gaertn., *Catananche* L. and *Tolpis* Adans. Jeffrey (1966) included *Hymenonema* in the *Catananche* sub-group, whereas Bremer (1993, 1994) placed it in the sub-tribe *Catananchinae* with *Catananche* and *Rothmaleria* Font Quer. Recently, Kilian & al. (2009) and Tremetsberger & al. (2013), based on molecular phylogenetic evidence, included *Hymenonema* in subtribe *Scolyminae* along with *Catananche*, *Gundelia* L. and *Scolyminus* L., while *Rothmaleria* was placed along with *Tolpis* in the *Cichorinae*.

The combination of the homogamous capitula with 5-dentate, ligulate flowers and the presence of latex easily places *Hymenonema* among the members of *Cichorieae* (Kilian & al. 2009). The morphological features that distinguish *Hymenonema* from the other genera of the *Cichorieae* are mainly in the shape of the achenes and pappus. *Hymenonema* together with *Catananche* are the only genera with the combination of a pappus composed of large scales apically prolonged into bristles, and achenes that are densely appressed pilose. The presence of receptacular paleae in *Hymenonema*, a character that is considered cardinal for *Asteraceae* classification, is also observed in some genera such as *Crepis* L., *Hypochaeris* L., *Rothmaleria* and *Scolyminus* (Bremer 1994; Kilian & al. 2009). For this shared character among *Hymenonema* and the above-mentioned genera, Bremer (1994) supported the hypothesis of plesiomorphy.

According to Kilian & al. (2009), the closest relative of *Hymenonema* is *Scolyminus*. The two genera share several morphological features, namely: pinnatifid-pinnatisect leaves, involucral bracts in several gradually differing rows, yellow florets, pilose corolla tube, yellow echinolophate pollen grains, long style branches withering rows, yellow florets, pilose corolla tube, yellow echinolophate pollen grains, long style branches with

The combination of the homogamous capitula with 5-dentate, ligulate flowers and the presence of latex easily places *Hymenonema* among the members of *Cichorieae* (Kilian & al. 2009). The morphological features that distinguish *Hymenonema* from the other genera of the *Cichorieae* are mainly in the shape of the achenes and pappus. *Hymenonema* together with *Catananche* are the only genera with the combination of a pappus composed of large scales apically prolonged into bristles, and achenes that are densely appressed pilose. The presence of receptacular paleae in *Hymenonema*, a character that is considered cardinal for *Asteraceae* classification, is also observed in some genera such as *Crepis* L., *Hypochaeris* L., *Rothmaleria* and *Scolyminus* (Bremer 1994; Kilian & al. 2009). For this shared character among *Hymenonema* and the above-mentioned genera, Bremer (1994) supported the hypothesis of plesiomorphy.

According to Kilian & al. (2009), the closest relative of *Hymenonema* is *Scolyminus*. The two genera share several morphological features, namely: pinnatifid-pinnatisect leaves, involucral bracts in several gradually differing rows, yellow florets, pilose corolla tube, yellow echinolophate pollen grains, long style branches withering rows, yellow florets, pilose corolla tube, yellow echinolophate pollen grains, long style branches with...
lected populations are deposited at the Herbarium of the University of Patras (UPA). Additional Hymenonema material was studied from UPA and from digital images of the following herbaria: ATH, ATHU, B, GZU, K, LD, P, S, W and WU (herbarium codes according to Thiers 2017+).

We examined morphologically the two Hymenonema species from 20 localities, 14 for *H. graecum* from seven islands of the Kiklades (Anafi, Andros, Kithnos, Mikonos, Serifos, Siros and Tinos) and six for *H. laconicum* from S Peloponnisos (Mt Parnonas and Mt Taigetos). The main morphological features measured were: stem height, width of rosette leaves and width of their terminal segment, length of cilia of receptacular pits, achene size, and pappus length (Table 1). Also, qualitative differences between the taxa were examined concerning shape of rosette leaves, ligule colour, anther tube (indumentum and colour) and its apical appendage, achene indumentum, and uniformity and colour of pappus.

Living plants from 11 different localities were cultivated in the experimental garden of the Botanical Institute, University of Patras, for karyological studies. These populations are indicated by an asterisk (*) in the specimen list (see Appendix).

The chromosome measurements were obtained from root-tip metaphases, using the squash technique (Östergren & Heneen 1962; Kamari 1976). Root tips were pre-treated for six hours in a mixture of 1:1 8-hydroxyquinoline (0.3 g/l):colchicine 0.2% w/v and followed by fixation in Carnoy [3:1 (v/v) absolute ethanol:glacial acetic acid] for 24 hours at 0–4 °C. Afterwards, they were hydrolysed in 1N HCl for 12 minutes at 60 °C and placed in Feulgen’s stain (Darlington & La Cour 1969) for about three hours. At least five metaphase plates of each population were examined and indices were calculated with Microsoft Excel (2007) and PAST (version 3.14, Hammer & al. 2001). Chromosome terminology follows Leván & al. (1964), Stebbins (1971) and Kamari (1976), taking into consideration comments and suggestions by Sybenga (1959), Bentzer & al. (1971) and Favarger (1978). For each taxon, the karyotype formula, maximum and minimum length of chromosomes, total chromosome length (TCL) and average chromosome length (ACL), along with their standard deviation (SD) are given. Moreover, r-index, R-length, centromeric index and arm difference ratio for the chromosome pairs of both taxa are estimated. The interchromosomal and intrachromosomal asymmetry are given estimating the Coefficient of Variation of Chromosome Length (CVCL; Paszko 2006; Watanabe & al. 1999) and the Mean Centromeric Asymmetry (MCA; Peruzzi & Eroğlu 2013; Peruzzi & Altinordu 2014), respectively. Additionally, the Coefficient of Variation of Centromeric Index (CVc) measuring the centromere position heterogeneity is estimated following Paszko (2006) and Peruzzi & Altinordu (2014). A multivariate analysis (Principal Coordinate Analysis, PCoA) was made for six karyological parameters: 2n, x, THL.

Table 1. The main morphological differences between *Hymenonema laconicum* and the typical and non-typical forms of *H. graecum*.

<table>
<thead>
<tr>
<th>Character</th>
<th>H. laconicum (H. laconicum)</th>
<th>H. graecum (typical form)</th>
<th>H. graecum (non-typical form)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem height</td>
<td>30–77 cm</td>
<td>14–67 cm</td>
<td>20–63 cm</td>
</tr>
<tr>
<td>Rosette leaves shape</td>
<td>pinnatifid-pinnatisect</td>
<td>pinnatifid-pinnatisect</td>
<td>pinnatifid-pinnatisect</td>
</tr>
<tr>
<td>Rosette leaves width</td>
<td>24–62 mm (9–15–35 mm)</td>
<td>12–50(–69) mm</td>
<td>11–26 mm</td>
</tr>
<tr>
<td>Cilia of receptacular pits</td>
<td>to 0.5 mm</td>
<td>to 0.5 mm</td>
<td>to 1 mm</td>
</tr>
<tr>
<td>Ligules colour</td>
<td>orange-yellow usually with a purple spot at base</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>Anther tube, fertile portion colour</td>
<td>dark purple</td>
<td>yellow</td>
<td>purple</td>
</tr>
<tr>
<td>Anther tube, apical appendage indumentum</td>
<td>dense</td>
<td>sparse ± sparse</td>
<td>± sparse</td>
</tr>
<tr>
<td>Achenes length</td>
<td>4.7–6 mm</td>
<td>3.5–5.4 mm</td>
<td>4–5 mm</td>
</tr>
<tr>
<td>Achenes width</td>
<td>1.4–2 mm</td>
<td>0.8–1.8 mm</td>
<td>1.1–1.3 mm</td>
</tr>
<tr>
<td>Pappus scales colour</td>
<td>distal ⅓ dark purple</td>
<td>uniform (pale straw-coloured)</td>
<td>uniform (pale straw-coloured)</td>
</tr>
<tr>
<td>Relative length</td>
<td>unequal</td>
<td>equal</td>
<td>equal</td>
</tr>
<tr>
<td>Pappus scales length</td>
<td>15–18.6 mm</td>
<td>10–14.5 mm</td>
<td>12.5–14 mm</td>
</tr>
</tbody>
</table>
Liveri & al.: Taxonomic study on the Greek endemic genus Hymenonema
(Total Haploid Length), CV_cl, CV_ci and MCA (Peruzzi & Altinordu 2014; Samaropoulou & al. 2016).

Results

Description — Herbs perennial, rosette-forming. Stems solitary to few, branched, with glandular and longer, eglandular hairs. Leaves pinnatifid-pinnatisect with dense, appressed, rigid, glandular and longer, eglandular hairs. Cauline leaves resembling rosette leaves or bract-like. Capitula 1 to c. 20 per individual. Involucral bracts in several imbricate rows, greenish in middle with scarious margin. Receptacle paleate, pitted, with awned scales peripherally. Receptacular paleae membranous. Ligules bright yellow or orange-yellow, 5-dentate. Achenes ob-conic, 5-angled, appressed pilose. Pappus of up to 15 linear-lanceolate, awned scales.

Key to the species of Hymenonema

1. Ligules orange-yellow usually with a dark purple spot at base; anther tube dark purple throughout and densely hairy; achenes brown, densely hairy; pappus of awned scales varying in length, shortest ones 2–10 mm long, longest ones 15–18.6 mm long

1. H. laconicum

Description — Stem 30–77 cm tall. Rosette leaves 10–25(-30) × 2.4–6.2 cm, pinnatifid with dentate, lobed segments; terminal segment (9–)15–35 mm wide, larger than lateral segments. Capitula (1–)5–15(–20) per individual. Involucre 14–25 × 15–26 mm at anthesis; bracts 28–54, in several imbricate rows, ovate to oblanceolate, glabrous, with a distinct scarious margin 1–3 mm wide and an acute apex. Receptacular pits with unequal cilia, to 1 mm long. Ligules orange-yellow, usually with a purple spot at base; tube to 15 mm long; limb to 25 × 5 mm. Anther tube dark purple, to 8 mm long, densely hairy.

– Catananche graeca sensu Bory & Chaub., Nouv. Fl. Pélop.: 55. 1838, non L.

Description — Herbs perennial, rosette-forming. Stems solitary to few, branched, with glandular and longer, eglandular hairs. Leaves pinnatifid-pinnatisect with dense, appressed, rigid, glandular and longer, eglandular hairs. Cauline leaves resembling rosette leaves or bract-like. Capitula 1 to c. 20 per individual. Involucral bracts in several imbricate rows, greenish in middle with scarious margin. Receptacle paleate, pitted, with awned scales peripherally. Receptacular paleae membranous. Ligules bright yellow or orange-yellow, 5-dentate. Achenes ob-conic, 5-angled, appressed pilose. Pappus of up to 15 linear-lanceolate, awned scales.
with triangular apical appendages of same colour. Style to 23 mm long. Achenes brown, 4.7–6 × 1.4–2 mm, 5-ribbed, punctate, densely hairy with rigid, appressed hairs. Pap-
pus with pale straw-coloured, awned scales, distal ½ dark purple; scales in 1 row, strongly varying in length, shortest ones 2–10 mm long, longest ones 15–18.6 mm long.

Table 2. Karyomorphometric data on *Hymenonema laconicum*. – l = length of long arm; s = length of short arm; SD = standard deviation; Sn = sum length of haploid chromosome set.

<table>
<thead>
<tr>
<th>Chromosome pair</th>
<th>l (µm) (SD)</th>
<th>s (µm) (SD)</th>
<th>l+s (µm)</th>
<th>r-index l/s</th>
<th>centromeric index l/l+s</th>
<th>arm ratio 1-s/l+s</th>
<th>relative length 1+s/Sn(l+s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.97 (0.26)</td>
<td>1.70 (0.28)</td>
<td>3.67</td>
<td>1.18</td>
<td>0.54</td>
<td>0.076</td>
<td>0.049</td>
</tr>
<tr>
<td>2</td>
<td>1.89 (0.33)</td>
<td>1.56 (0.20)</td>
<td>3.45</td>
<td>1.21</td>
<td>0.55</td>
<td>0.090</td>
<td>0.058</td>
</tr>
<tr>
<td>3</td>
<td>1.72 (0.28)</td>
<td>1.53 (0.27)</td>
<td>3.25</td>
<td>1.13</td>
<td>0.53</td>
<td>0.058</td>
<td>0.055</td>
</tr>
<tr>
<td>4</td>
<td>1.77 (0.24)</td>
<td>1.36 (0.26)</td>
<td>3.13</td>
<td>1.32</td>
<td>0.57</td>
<td>0.131</td>
<td>0.053</td>
</tr>
<tr>
<td>5</td>
<td>1.92 (0.52)</td>
<td>1.28 (0.54)</td>
<td>3.06</td>
<td>1.73</td>
<td>0.63</td>
<td>0.252</td>
<td>0.051</td>
</tr>
<tr>
<td>6</td>
<td>1.62 (0.20)</td>
<td>1.14 (0.17)</td>
<td>2.99</td>
<td>1.20</td>
<td>0.55</td>
<td>0.089</td>
<td>0.050</td>
</tr>
<tr>
<td>7</td>
<td>1.73 (0.20)</td>
<td>1.37 (0.25)</td>
<td>2.83</td>
<td>1.19</td>
<td>0.54</td>
<td>0.083</td>
<td>0.048</td>
</tr>
<tr>
<td>8</td>
<td>1.55 (0.40)</td>
<td>1.13 (0.19)</td>
<td>2.69</td>
<td>1.38</td>
<td>0.57</td>
<td>0.145</td>
<td>0.045</td>
</tr>
<tr>
<td>9</td>
<td>1.35 (0.31)</td>
<td>1.16 (0.19)</td>
<td>2.84</td>
<td>1.16</td>
<td>0.54</td>
<td>0.071</td>
<td>0.042</td>
</tr>
<tr>
<td>10</td>
<td>1.42 (0.35)</td>
<td>0.79 (0.15)</td>
<td>2.21</td>
<td>1.82</td>
<td>0.64</td>
<td>0.280</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Chromosome number — 2n = 2x = 20.

Phenology — Flowering from May to July; fruiting from June to August.

Distribution — S Peloponnisos, in the lowlands surrounding Mt Parnonas, Mt Taigetos and (unconfirmed) Mt Menalo (Fig. 1).

Ecology — Dry slopes, abandoned terraces in Quercus-Pistacia scrub, roadides, olive groves,
on limestone, at altitudes of (5–)20–800(–1300) m (Fig. 2A).

Karyology — Karyotype formula: \(2n = 16m + 2sm + 2sm-SAT = 20\) chromosomes.

The karyotype of *Hymenonema laconicum* is diploid and symmetrical. It consists of 16 metacentric chromosomes, two submetacentric chromosomes, which are the fifth pair from largest, and two submetacentric, satellited chromosomes, which are the smallest pair (Fig. 5A, B). The size of chromosomes varies between 1.80–3.32 μm and the average chromosome length equals 2.61 μm. THL and TCL equal 26.06 μm and 52.11 μm, respectively. The interchromosomal asymmetry index \((CV_{el})\) is estimated at 13.61 and the intrachromosomal asymmetry index \((CV_{co})\) at 11.15. The index related to centromere position heterogeneity \((CV_{cl})\) equals 11.05. The morphometric data of *H. laconicum* are given in Table 2.

All the material studied here was collected from the lowlands of Mt Parnonas and Mt Taigetos, and the exact locations are provided in the specimen list (see Appendix) indicated with an asterisk. The chromosome number \(2n = 20\) has also been reported in material from Mt Parnonas and Mt Taigetos (Iatrou 1986; Tan & al. 2001) and from the Langada gorge in Mt Taigetos (Liveri & al. 2014).

Conservation status — No protection status is known until now; the species was only included in the directive for threatened taxa according to the World Conservation Monitoring Centre (UNEP-WCMC 2013). However, *Hymenonema laconicum* is found in four protected sites of the NATURA 2000 network (Mt Parnonas: GR2520005, GR2520006; Mt Taigetos: GR2550006, GR2550009). For the protected area GR2520006 (Mt Parnonas) the presence of *H. laconicum* is characterized as very rare and for GR2550006 (Mt Taigetos) the population size was counted as 100–250 individuals by the NATURA 2000 network (standard data forms available at http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=GR2520006 and http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=GR2550006, respectively). Based on our field observations most of the subpopulations of *H. laconicum* examined do not exceed 100 mature individuals each. The notably small number of mature individuals in each subpopulation lead us to assess *H. laconicum* as Vulnerable (VU) according to criteria C2a(i) of the IUCN (2016).

Fig. 3. *Hymenonema graecum* – A: individuals of typical form; B: capitulum of typical form; C: involucre of typical form; D: capitulum of non-typical form; E: involucre of non-typical form. – Photographs: A, C: Kithnos island, 20 May 2007, G. Kamari (Phitos & Kamari 27334, herb. Phitos & Kamari); B, D: Tinos island, 18 Jul 2014, E. Liveri (Liveri & Ketsilis-Rinis 121, UPA); E: Siros island, 15 Jul 2013, E. Liveri (Liveri & Ketsilis-Rinis 110, UPA).
Description

Stem 14 – 67 cm tall.

Rosette leaves 3.2 – 25 (– 35.4) × 1.2 – 5 (– 6.9) cm, pinnatifid with dentate, lobed segments; terminal segment 3 – 15 (– 21) mm wide, larger than lateral segments.

Capitula 1 – 5 (– 15) per individual.

Involucre 15 – 26 × 10 – 24 mm at anthesis; bracts 24 – 50, in several imbricate rows, ovate to oblong, glabrous, with a distinct scarious margin 0.8 – 2.5 mm wide and an acute apex. Receptacular pits with unequal cilia to 0.5 mm long.

Ligules yellow; tube to 11 mm long; limb to 18 × 4 mm. Anther tube yellow, to 6 mm long, sparsely hairy, with triangular apical appendages of same colour. Style to 14 mm long. Achenes light brown, 3.5 – 5.4 × 0.8 – 1.8 mm, 5-ribbed, punctate, ± sparsely hairy with rigid, appressed hairs. Pappus of pale straw-coloured, awned scales, in 1 row, ± equal in length, 10 – 14.5 mm long.

Chromosome number

2n = 2x = 20.

Phenology — Flowering from May to July; fruiting from June to the beginning of September.

Distribution — Kiklades and (unconfirmed) NW Kriti (Fig. 1).

Ecology — Growing in garigue, phrygana, stony...
places, cliffs, roadsides, residential areas, mostly on limestone, also on schistose and granitic substrate, margins of coastal saline ground, at altitudes of 0–450 m (Fig. 3A).

Morphological variation — During the field work we observed that some individuals (Tinos) or even a whole population (Siros) of *Hymenonema graecum* (Fig. 1) have some morphological features resembling *H. laconicum*. This non-typical *H. graecum* has a purple anther tube as in *H. laconicum* but with a yellow apical appendage (Fig. 4E) and the achenes (Fig. 4F) are intermediate in indumentum between those of *H. graecum* and *H. laconicum*. With respect to the other characters, the non-typical plants largely match typical *H. graecum* (Table 1). This non-typical form of *H. graecum* has been observed on three islands: Mikonos, Siros and Tinos. On Mikonos, specimens (at LD) from two different localities were examined, and the plants belong to the non-typical form of *H. graecum*. On Siros, all the localities examined had plants belonging to the non-typical form of *H. graecum*. On Tinos, all the localities examined had both forms of *H. graecum*. On the islands of Anafi, Andros, Kithnos and Serifos, all the populations were of typical *H. graecum*.

Karyology — Karyotype formula: \(2n = 18m + 2m-SAT = 20\) chromosomes.

All the populations of *Hymenonema graecum* are found to be diploid having a symmetrical karyotype, with 20 metacentric chromosomes. The smallest chromosome pair bears well-observed satellites (Fig. 5C, D). This satellite pair shows structural heterogeneity with one metacentric and one submetacentric homologue in material collected from Kithnos island. The chromosome size ranges from 2.21–4.27 μm. The average chromosome length is 3.39 μm, the total chromosome length is 67.81 μm and for the haploid series is 33.91 μm. The asymmetry indices, \(CV_{cl}\), and \(M_{cl}\), equal 16.25 and 11.86, respectively. The coefficient of variation of centromeric index is estimated to 11.27. The morphometric data of the typical *H. graecum* are given in Table 3.

Individuals of the non-typical form of *Hymenonema graecum* were also examined karyologically, and the results show similar karyotype morphology to the typical form (Fig. 5E). The morphometric data from these populations were calculated separately in order to find possible variations (Table 4). The karyotype formula of non-typical *H. graecum* is: \(2n = 18m + 2m-SAT = 20\) chromosomes (Fig. 5F). The chromosome size varies

Fig. 4. Morphological differences of achene and anther tube of *Hymenonema*. – A, B: *H. laconi­cum* (Kyriakopoulos 1524, herb. Phitos & Kamar); C, D: typical form of *H. graecum* (Liveri & Ketsilis-Rinis 100, UPA); E, F: non-typical form of *H. graecum* (Liveri & Ketsilis-Rinis 107, UPA). – Scale bars = 1 mm.
from 2.314.11 µm, while the average chromosome length is 3.29 µm. THL and TCL equal 32.95 µm and 65.89 µm, respectively. MCA is estimated at 13.27, CV CL at 15.63 and CVCI at 10.37. The morphometric data of the non-typical H. graecum are given in Table 4.

The chromosome number 2n = 20, found here, is in accordance with previous references based on material from Kithnos (Liveri & al. 2014), Naxos and Schinousa (Strid 2015). There is also one reference of the same chromosome number (Iatrou 1986), but the locality of the material is not mentioned.

The karyomorphometric indices of Hymenonema laconicum and H. graecum (typical and non-typical) are given in Table 5.

Conservation status — Hymenonema graecum is protected by Greek Presidential Decree 67/1981 (1981) on the protection of the native flora and wild fauna of Greece and was also included in the directive for threatened taxa according to the World Conservation Monitoring Centre (UNEP-WCMC 2013). Populations of H. graecum are found in five protected sites of the NATURA 2000 network (Anafi: GR422002; Iraklia, Schinousa and nearby islands/islets: GR4220013; Naxos: GR4220014; Poliegos-Kimolos: GR422006; Santorini: GR4220003). The examined subpopulations of H. graecum do not exceed more than 100 mature individuals each. Only on Tinos island does the subpopulation occurring close to the villages of Arnados, Dio Choria and Monastiri comprise more than 100 mature individuals. The species distribution includes almost all the Kiklades islands and islets reaching an extent of occurrence a little more than 2500 km². However, in view of the severe fragmentation of its distribution area and the continuous decline of its habitats, we assess the species as Vulnerable (VU) according to criteria B1ab(iii); C2a(ii) of the IUCN (2016).

Discussion

For this study, the geographical distribution of Hymenonema (Fig. 1) is presented in detail (see Appendix). Hymenonema graecum is distributed at most of the islands and islets of the Kiklades, but there are also two references from Kriti and Turkey. The presence of H. graecum in NW Kriti was referred by Raulin (1869: 493) and Boissier (1875: 715) and it was later confirmed by Zaffran (1990: 331). Since then, several botanists (N. Turland, pers. com.) searched for the plant without success at the locality mentioned by Zaffran (“à la périphérie du terrain salé au fond de la baie de Souda”). It should be noted that this area has been occupied for military purposes since 1951–1952. Now, it is the location of three major military installations and so access is strictly restricted. Concerning the presence of H. graecum in Turkey, one specimen from Herb. Heldreich was mentioned by Boissier (1875: 715) collected from the region “Byzantium”. One additional reference from the Flora of Turkey (Matthews 1975: 626), from Istanbul, based on collections by Cadet de Fontaney also in Herb. Heldreich, is presumably wrong. The two references most likely refer to the
same specimen, which was probably a cultivated specimen. Therefore, in Euro+Med (2006+), the presence of *H. graecum* in Turkey as well as in Kriti is considered questionable.

There is also a reference of *Hymenonema laconicum* from Mt Menalo (Halácsy 1902: 173), with a herbarium specimen of Sartori, which, however, has not recently been confirmed.

The previous identification keys for the species of *Hymenonema* were based mainly on the width of the terminal segment of the basal leaves and the uniformity of the pappus (Sell 1976a). According to our results, the width of the terminal segment in contrast to the pappus structure is not a reliable diagnostic character. Moreover, new diagnostic features were observed: colour of ligules, colour and indumentum of anther tube, and indumentum of achenes (Fig. 4). It is noteworthy that the purple spot at the base of the ligules, which was mentioned for *H. graecum* in *Flora europaea* (Sell 1976a), is observed only on the ligules of *H. laconicum*. Additionally, Strid (2016) stated that the colour of the anther tube of *H. graecum* is orange-brown. We assume that the mentioned plants belong to the non-typical *H. graecum*. Also, the genus description by Sell (1976a) does not specify if the number of capitula (1–3) is per stem or per individual. However, we have counted in *H. laconicum* (1–)5–15(–20) and in *H. graecum* 1–5(–15) capitula per individual (Fig. 2A, 3A).

The main morphological differences between *Hymenonema laconicum* and *H. graecum*, presented in Table 1, support that they are two clearly separated species. Individuals or whole populations of *H. graecum* with intermediate morphological characters, characterized by purple anther tubes with a yellow appendage, are here reported for the first time. In this study, we define the above-mentioned form of *H. graecum* as non-typical. The typical form with the yellow anther tube and other morphological differences (Table 1, Fig. 3, 4) agrees with the description by Candolle (1838: 116), which refers to “capitula magna flava”. The lectotype illustration (Tournefort 1717: t. facing p. 223), although it does not show the colour of the anther tube, resembles the form of *H. graecum* with the yellow anther tube.

A karyomorphological analysis of the genus *Hymenonema*, including populations from the most of its distribution area, is carried out for the first time. The karyotypes of *H. laconicum* and *H. graecum* show low intrachromosomal (MCA) and interchromosomal (CVCL) asymmetry, as was expected from the predominance of metacentric chromosomes and the similar chromosome size. The heterogeneity of the centromere position (CVCI) is also low for both species. The above-mentioned indices are slightly higher for typical *H. graecum*. The karyological parameters concerning the chromosome length (THL, TCL, ACL) were also higher for *H. graecum*. The intrachromosomal asymmetry for non-typical *H. graecum* is even higher compared to the typical *H. graecum*, while the CVCI is smaller than *H. laconicum* (Table 5). The karyological parameters about chromosome length (THL, TCL, ACL) for non-typical *H. graecum* are intermediate between the two species. Statistical analysis (PCoA; Fig. 6) of the six karyological parameters according to the method proposed by Peruzzi & Altinordu (2014) does not provide additional data to understand the relationships between these taxa. The accessions of the examined taxa overlap and no clear group is created.

Cytotaxonomic data have been used to explain the origin and evolutionary trends of endemics (Favarger & Contandriopoulos 1961; Favarger 1969; Favarger &
Siljak-Yakovlev 1986; Siljak-Yakovlev & Peruzzi 2012). Based on our karyological data, *Hymenonema* species are characterized as schizoendemics. *Hymenonema* *laco­nicum* and *H. graecum* share the same chromosome number, show similar morphological features and occur in different but close geographical areas. The evidence from the current study strongly supports the hypothesis of schizoendemism.

For *Hymenonema*, there is insufficient data to prove whether the differentiation of the two species started before or after the geographical isolation. However, the finding of the intermediate form of *H. graecum* suggests complex speciation events that occur in the Aegean archipelago.

The presence of intermediate plants between the two species may imply hybridization. Examples of hybridization between plant species have been studied extensively in the Aegean area, such as the *Crepis neglecta* L. complex (Kamari 1976). However, in this case the scenario of hybridization does not seem reasonable, since the non-typical *Hymenonema graecum* has not been found in the middle of the distribution areas of the two species, i.e. in the W Kiklades (Kimolos, Kithnos, Milos, Serifos and Sifnos). On the contrary, non-typical *H. graecum* occurs on Mikonos, Siros, Tinos (N Kiklades) and probably on Naxos (C Kiklades; Strid 2016). Finding the non-typical *H. graecum* is an interesting element in the evolutionary process of the genus, but still more populations from different islands need to be examined.

In conclusion, the karyological and morphological data provide a sufficient taxonomic framework for *Hyme­nonema*. The new findings of the current study contribute to a better understanding of the genus. The provided data combined with a molecular approach might elucidate the phylogenetic relationships between the species of *Hyme­nonema*, as well as with its closest genera.

Acknowledgements

We would like to thank our colleagues (Assist. Prof. A. Tiniaikou, Dr K. Kougioumoutzis, Ch. Kyriakopoulos and G. Kofinas) and all the others who kindly offered material and photographs. We express our sincere thanks to V. Ketsilis-Rinis for his company and help during field work and to our colleague N. Turland for his help in the typification of the genus. Also, many thanks to Prof. Emer. D. Phitos for his invaluable help. Finally, we would like to thank the two anonymous reviewers for their useful comments, suggestions and corrections on an earlier version of this paper.

References

genome size in 128 Asteraceae species and subspecies, with first assessments for 40 genera, 3 tribes and 2 subfamilies. – [E]. Biosyst. 147: 1219–1227.

Raulin V. 1869: Description physique de l’île de Crète. 2. – Paris: Arthus Bertrand.
Stebbins G. L. 1971: Chromosomal evolution in higher plants. – London: Edward Arnold Ltd.
UNEP-WCMC 2013: UNEP-WCMC Species Database. – Published at https://www.unep-wcmc.org/ [accessed 28 Oct 2013].
Zaffran J. 1990: Contributions à la flore et à la végétation de la Crète. – Aix en Provence: Université de Provence Aix-Marseille 1.
Appendix: List of material examined

Populations indicated by an asterisk (*) have been studied karyologically.

1. Hymenonema laconicum

Greece: Peloponnisos: Arkadia: NW slopes of Mt Parnon, 2–3 km E of village “Ajios Pertos” along road to “Moni Malevis”, place called Zonanga, 900 m, dry, stony roadsides and rocky hillsides with Quercus coccifera, Phlomis and Spartium shrubs, limestone (ligules orange-yellow), 15 May 2002, Constantinidis & Kalpoutzakis 10112 (ATHU, UPA, herb. Phitos & Kamari); 3.1 km from small town of Leonidio towards Tsitalia village, 100 m, sandy-stony roadsides, dry fallow fields and margins of abandoned fields (florets orange-yellow), 15 May 1970, Tzamatiadou 8763 (ATH 14314); 1–2 km after crossing of road from Leonidion to Tsitalia village, 100 m, sandy-stony roadsides, dry fallow fields and margins of abandoned fields (florets orange-yellow with a purple spot at base), 18 May 1970, Tzamatiadou 8915 (ATH 14313); c. 6.8 km from Leonidion towards Pouliithra, close to Pouliithra, 37°07’N, 22°53’E, 20–40 m, in roadsides and margins of abandoned fields (florets orange), 25 May 2002, Constantinidis & Kalpoutzakis 10112 (ATHU, UPA, herb. Phitos & Kamari); *ibid., 37°08.90’N, 22°52.65’E, 113 m, 13 Jun 2014, Kofinas & Dolianitis 129 (UPA), — Lakonia: in regione olearum ad radices Taygeti in herbis pr. Androuvista, Jun 1844, Heldreich s.n. (K 000797232, P 02831032, P 02831037, P 02831041, P 02831043, P 02831044); in herbis des reg. [radices] m. Taygeti Laconiae, Jun 1844, Heldreich s.n. (P 02831036, P 02831039); Taygetus, Heldreich s.n. (K 000797231); habit, in m. Malevo Laconiae, 3000’, 24 Jun 1857, Orphanides 1152 (P 02831038, WU 0077308); Morea: in collib. pr. Golass, 700 m, Jul 1879, Pichler s.n. (P 02831001, P 02831037, P 02831041, P 02831045); Mani, Petria-Arna, 1 Jan 1950, Goulimy 6040 (ATH 51278); Krokeai, 13 May 1955, Goulimy 6041 (ATH 51280); inter Sparta et Skouras, Iter Graecum XI 1964, Rechinger 24754 (B 100209164); Mt Taigeti, road from village to Alepochori, stony slope at left side of road, 36°58’N, 22°43’E, 350–400 m, 16 Jun 2014, Liveri & Kofinas 132 (UPA); on roadsides between villages Taigeti and Mistras, 600 m, 15 Jun 2012, Kyriakopoulos & Kartsonas 1073 (UPA, herb. Phitos & Kamari); *Lagkada gorge, climbing region, 37°04.59.09’N, 22°18.39.30’E, 800 m, 24 Jun 2013, Kyriakopoulos 1524 (UPA, herb. Phitos & Kamari); Geraki, road from village to Alepohori, 36°58’56’N, 22°43’46’E, 300–400 m, 24 May 2014, Kofinas 126 (UPA); *Lagkada gorge, climbing region, 37°04.59.09’N, 22°18.39.30’E, 800 m, 25 May 2014, Liveri & Kofinas 130 (UPA); Krokees village, 25 May 2014, Liveri & Kofinas 131 (UPA); entrance of Kaida, 15 Jun 2014, Kofinas 132 (UPA); *Geraki, road from village to Alepohori, 36°58’56’N, 22°43’46’E, 300–400 m, 16 Jun 2014, Liveri & Ketitsis-Rinis 124 (UPA); Anavriti, 37°02.146’N, 22°24.049’E, 440 m, 5 Jul 2014, Kyriakopoulos & Kofinas s.n. (UPA). — Messenia: Ep. Kalamon: pr. Selitza ad radices m. Taygeti, 37°03’N, 22°07’E, 28 May 1894, Heldreich (LD 37837); ibid., 15 May 1896, Heldreich 1355 (LD 37838); P 02831030, P 02831031); ibid., 15 May 1896, Heldreich 1355 (K 000797230); Laconia boreo-occidentalis: in regione litorali ad radices m. Selitza prope Kalama, 15 May – 15 Jul 1896, Zahn 1355 (K 000797229, P 02831040, P 02831042, P 03763056, P 03763058, P 04310661); Ep. Kalamata: c. 2 km from Aro Ambria along road to Touria, 37°05.45’N, 22°03.20’E, c. 150 m, olive groves and field margins, on sandstone, 14 Jun 1995, Kamari & al. 2591 (UPA, herb. Phitos & Kamari); 8 km SE of Kalamata, locally common on roadsides, along olive groves (this specimen taken above hotel Lida), 4 Apr 1996, Emanuelsson 1886 (S 10-12275); Rintomo, 680 m, 13 Jun 2009, Kyriakopoulos s.n. (photo); S part of Mt Taigetos, peak of Zizali, in from Siderokastron, along road to Skofianitika and Skamnitsa, 36°46’N, 22°25’E, 530 m, in Quercus/Pistacia scrub, (latex white, ligules orange-yellow with purplish black stigmas bright lemon-yellow), 18 Jun 1991, Tan & Vold 9754 (UPA, herb. Phitos & Kamari); Eparchia Gitiou, Siderokastron, 530 m, 28 Jul 1993, Tan 09754 (B 100185587); Ep. Lakakemonia: NE foot-hills of Mt Taitjlos, Langaditassa gorge SW of Parori, 37°03’30’N, 22°22.40’E, 350–500 m, on limestone substrate, 14 Jun 1995, Kamari & al. 1533 (UPA, herb. Phitos & Kamari); 3.9 km after village of Geraki towards village of Alepochori, stony slope at left side of road, 36°58’N, 22°43’E, 350–400 m, abandoned olive grove, calcareous and schistose substrate, with Quercus coccifera, Phlyreya latifolia, Calicotome villosa, Coridithymus capitatus, Thymus laconicus, 2 May 2005, Kalpoutzakis 1656 (ATHU): 13–14 km NNE of village of Mitropoli, along a secondary road, 37°02’N, 22°59’E, 80–100 m, roadsides, limestone, 30 May 2005, Constantinidis & Kalpoutzakis 11380 (ATHU); C Taigetos, Anavriti, 37°2.148’N, 22°23.864’E, 800 m, 10 Jun 2007, Kyriakopoulos 659 (UPA, herb. Phitos & Kamari); Geraki, road from village to Alepohori, 36°58’56’N, 22°43’46’E, 300–400 m, 27 May 2012, Kofinas 128 (UPA); on roadsides between villages Taigeti and Mistras, 600 m, 15 Jun 2012, Kyriakopoulos & Kartsonas 1073 (UPA, herb. Phitos & Kamari); *Lagkada gorge, climbing region, 37°04.59.09’N, 22°18.39.30’E, 800 m, 24 Jun 2013, Kyriakopoulos 1524 (UPA, herb. Phitos & Kamari); Geraki, road from village to Alepohori, 36°58’56’N, 22°43’46’E, 300–400 m, 24 May 2014, Kofinas 126 (UPA); *Lagkada gorge, climbing region, 37°04.59.09’N, 22°18.39.30’E, 800 m, 25 May 2014, Liveri & Kofinas 130 (UPA); Krokees village, 25 May 2014, Liveri & Kofinas 131 (UPA); entrance of Kaida, 15 Jun 2014, Kofinas 132 (UPA); *Geraki, road from village to Alepohori, 36°58’56’N, 22°43’46’E, 300–400 m, 16 Jun 2014, Liveri & Ketitsis-Rinis 124 (UPA); Anavriti, 37°02.146’N, 22°24.049’E, 440 m, 5 Jul 2014, Kyriakopoulos & Kofinas s.n. (UPA).
area of Tsopania, 36°49'N, 22°24'E, 1000 m, 30 May 2013, Kyriakopoulos & Kartsonas 1463 (UPA, herb. Phitos & Kami); close to junction of provincial road Dirachiou-Thourias, 37°9.780'N, 22°11.488'E, 700 m, 1 Jun 2015, Kyriakopoulos & Kofinas 2196 (UPA, herb. Phitos & Kami).

2. Hymenoneema graecum

area of Tsopania, 36°49'N, 22°24'E, 1000 m, 30 May 2013, Kyriakopoulos & Kartsonas 1463 (UPA, herb. Phitos & Kami); close to junction of provincial road Dirachiou-Thourias, 37°9.780'N, 22°11.488'E, 700 m, 1 Jun 2015, Kyriakopoulos & Kofinas 2196 (UPA, herb. Phitos & Kami).

2. Hymenoneema graecum

area of Tsopania, 36°49'N, 22°24'E, 1000 m, 30 May 2013, Kyriakopoulos & Kartsonas 1463 (UPA, herb. Phitos & Kami); close to junction of provincial road Dirachiou-Thourias, 37°9.780'N, 22°11.488'E, 700 m, 1 Jun 2015, Kyriakopoulos & Kofinas 2196 (UPA, herb. Phitos & Kami).
(LD 1540957); c. 1 km W of Konia, 16 Aug 1987, Landström 7346 (LD 1246992); *Monastiri, Arnados, Dio Choria, along roadsides connecting these three villages, 37°33′44″N to 37°33′47″N, 25°10′58″E to 25°11′29″E, 350–450 m, 17 Jul 2014, Liveri & Ketsilis-Rinis 117 (UPA); *Konia bay, 37°33′12.7″N, 25°08′10.5″E, 0–100 m, on rocks, phrygana, 18 Jul 2014, Liveri & Ketsilis-Rinis 121 (UPA); *Kolimpithra bay, 37°37′49.4″N, 25°08′44.5″E, 0–10 m, on rocks, phrygana, 19 Jul 2014, Liveri & Ketsilis-Rinis 123 (UPA).