In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.
How to translate text using browser tools
1 October 2011
Sexual Dimorphism of Gonadotropin-Releasing Hormone Type-III (GnRH3) Neurons and Hormonal Sex Reversal of Male Reproductive Behavior in Mozambique Tilapia
Asami Kuramochi,
Atsuhiro Tsutiya,
Toyoji Kaneko,
Ritsuko Ohtani-Kaneko
ACCESS THE FULL ARTICLE

Zoological Science
Vol. 28 • No. 10
October 2011
Vol. 28 • No. 10
October 2011
androgen
behavior
brain
GnRH
sex reversal
sex-changing fish
sexual dimorphism