How to translate text using browser tools
12 October 2022 Growth-Promotion Effects of Dissolved Amino Acids in Three Species of Hynobius Salamander Hatchlings
Noboru Katayama, Keina Tanimura
Author Affiliations +

It has been suggested that aquatic vertebrates may be able to meet their energy requirements by using the amino acids dissolved in environmental water. If this ability can be applied to aquatic organisms generally, then conventional ecological theories related to food web interactions should be revisited, as this would likely bring about significant advances in applications. Here, we prepared two 1 mM amino acid (phenylalanine and glycine) solutions in environmental water and conducted laboratory experiments to demonstrate the utilization of dissolved amino acids by hatchlings of three salamander species (Ezo: Hynobius retardatus, Tohoku: Hynobius lichenatus, and Japanese black: Hynobius nigrescens). Compared to controls (no amino acids in environmental water), the growth rate for Ezo salamanders was higher when larvae were reared in phenylalanine solution, while that for Japanese black salamanders was higher in glycine and phenylalanine solutions. Amino acids in environmental water had no effect on the growth of Tohoku salamanders. However, when growth was divided into early (days 1 to 5) and late (days 5 to 7) developmental stages, growth in early-developmental stage individuals was improved by phenylalanine treatment, even in Tohoku salamanders. The results showed that the growth of salamander larvae was improved when salamanders were reared in environmental water with high amino acid concentrations. Although aquatic bacteria may not have been removed completely from the environmental water, no other eukaryotes were present. Our results suggest an overlooked nutrient pathway in which aquatic vertebrates take up dissolved amino acids without mediation by other eukaryotes.

© 2022 Zoological Society of Japan 1
Noboru Katayama and Keina Tanimura "Growth-Promotion Effects of Dissolved Amino Acids in Three Species of Hynobius Salamander Hatchlings," Zoological Science 40(1), 13-18, (12 October 2022).
Received: 22 April 2022; Accepted: 24 August 2022; Published: 12 October 2022
aquatic vertebrate
developmental stage
Food web
growth rate
nutritional pathway
Get copyright permission
Back to Top