How to translate text using browser tools
3 June 2024 Phylogeography of Parnassius citrinarius Based on Mitochondrial DNA Reveals Large Differences in Genetic Structure between the Eastern and Western Japan
Nobuaki Nagata
Author Affiliations +
Abstract

The Japanese Archipelago hosts a rich butterfly fauna, and elucidating the genetic structures of multiple species is necessary to clarify their formation processes. This study aimed to reveal the genetic structure and distribution formation process of Parnassius citrinarius, which is widely distributed across the Japanese Archipelago from Hokkaido to Shikoku, through phylogeographic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI) gene sequence. Thirty haplotypes were revealed from 311 individuals from 47 sites, indicating significant differences in the genetic structures between the eastern and western parts of the Japanese Archipelago. In Eastern Japan, multiple genetic clusters were found, with some sites harboring two clusters. The divergence times among populations in Eastern Japan were relatively recent, and no genetic differentiation was observed between regions, including between Hokkaido and Honshu, which are separated by a narrow strait. In contrast, in Western Japan, including Shikoku, unique genetic clusters were observed in each region. The phylogenetic relationships among populations were regionally clustered, and the divergence times were relatively ancient. The distribution and genetic structure of P. citrinarius in the Japanese Archipelago have been significantly influenced by temperature fluctuations and the presence of geographical barriers during the Pleistocene glacial-interglacial cycles, including the potential formation of refugia in Western Japan.

Nobuaki Nagata "Phylogeography of Parnassius citrinarius Based on Mitochondrial DNA Reveals Large Differences in Genetic Structure between the Eastern and Western Japan," Zoological Science 41(4), 385-391, (3 June 2024). https://doi.org/10.2108/zs230072
Received: 23 July 2023; Accepted: 1 April 2024; Published: 3 June 2024
KEYWORDS
divergence time
genetic diversity
Lepidoptera
papilionidae
relict
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top