Open Access
How to translate text using browser tools
1 December 2004 The Effect of Egg Size on Growth and Survival of the Tree Sparrow Passer montanus Nestlings
Barbara Pinowska, Miłosława Barkowska, Jan Pinowski, Andrzej Bartha, Kyu-Hwang Hahm, Natalia Lebedeva
Author Affiliations +
Abstract

The paper analyses the effect of egg dimensions (volume, breadth, and length) on the growth and development of Tree Sparrow nestlings on successive days of life. Egg size did not influence nestling mortality. It was found that for most days of nestling life, the mean volume and breadth of eggs were positively correlated with the mean mass of nestlings in the nest. Similarly, the deviation of the volume and breadth of a particular egg from the mean egg volume and breadth in the clutch was positively correlated with the deviation of nestling mass from the mean nestling mass in the nest. Nestling growth and development in terms of asymptotic mass (g), maximum growth rate (g/day), tarsus length, and longest remex length were also positively correlated with egg size. The effect of egg size was particularly pronounced in the period of termination of intensive growth rate, development of thermoregulation, and feather development. It is possible that larger eggs contain more microelements, hormones, antioxidants, and vitamins.

REFERENCES

1.

V. Apanius 1998. Ontogeny of immune function. In: J. M. Starck , R. E. Ricklefs (eds). Avian growth and development. Oxford Univ. Press, New York—Oxford, pp. 203–222. Google Scholar

2.

A. Ar , B. Arieli , A. Bellinsky , Y. Yom-Tov 1987. Energy of Avian egg and hatchlings: utilization and transfer. J. Experimental Zool., Suppl. 1: 151–154. Google Scholar

3.

J. Bańbura 1996. [lntra-population variability of egg measurments in the Barn Swallow Hirundo rustica]. Wydawnictwo Uniwersytetu Łódzkiego. Google Scholar

4.

J. Bańbura , P. Zieliński 1998. An analysis of egg-size repeatability in Barn Swallow Hirundo rustica. Ardeola 45: 183–192. Google Scholar

5.

M. Barkowska , J. Pinowski , B. Pinowska 2003. The effect of trend in ambient temperature on egg volume in the Tree Sparrow Passer montanus. Acta Ornithol. 38: 5–13. Google Scholar

6.

J. Bernardo 1996a. Maternal effect in animal ecology. Am. Zool. 36: 83–105. Google Scholar

7.

J. Bernardo 1996b. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 36: 216–236. Google Scholar

8.

H. M. Blalock 1960. Social statistics. McGraw-Hill Book Company Inc., New York, Toronto, London. Google Scholar

9.

J. D. Blount , P. F. Surai , R. Nager , D. C. Houston , A. P. Møller , M. L. Trewby , M. W. Kennedy 2002. Carotenoids and egg quality in the lesser Black-backed Gull Larus fuscus: a supplemental feeding study of maternal effects. Proc. R. Soc. London B 269: 29–36. Google Scholar

10.

A. M. Bolotnikov , L. F. Skryleva , V. A. Tarasov , V. Z. Angalt 1978. [Differentiation of egg quality in a clutch and survival of nestling Rooks]. Ekologija 2: 86–88. Google Scholar

11.

M. Bolton 1991. Determination of chick survival in the lesser black-backed gull: relative contributions of egg-size and parental quality. J. Anim. Ecol. 60: 949–960. Google Scholar

12.

J. K. Christians 2002. Avian egg size: variation within species and inflexibility within individuals. Biological Reviews 77: 1–26. Google Scholar

13.

P. Chylarecki 2000. [Variation in components of the reproductive effort of females in a population of Ringed Plover Charadrius hiaticula]. Ph.D. thesis, Institute of Ecology PAS, Ornithological Station, Gdańsk. Google Scholar

14.

G. Deckert 1962. Zur Ethologie des Feldsperlings (Passer m. montanus L.). J. Ornithol. 103: 428–486. Google Scholar

15.

D. C. Deeming 2002. Functional characteristics of eggs. In: D. C. Deeming (ed.) Avian incubation. Oxford Univ. Press, pp. 28–53. Google Scholar

16.

M. R. Dohm 2002. Repeatability estimates do not always set an upper limit to hereditability. Functional Ecol. 16: 273–280. Google Scholar

17.

A. Draber-Mońko 1997. Protocalliphora azurea (Fall.) (Diptera, Calliphoridae) and other insects found in nests of sparrows, Passer domesticus (L.) and Passer montanus (L.) in the vicinity of Warsaw. International Studies on Sparrows 22–23: 3–21. Google Scholar

18.

S. A. Fetisov , A. R. Gaginskaya 1981. [The growth and development of the nestlings. In: G. A. Noskov (ed.) The Sparrows Passer montanus L. (Characteristic of species on area of distribution)]. LGU, Leningrad, pp. 166–187. Google Scholar

19.

M. S. Finkler , Orman J. B. Van , P. R. Sotherland 1998. Experimental manipulation of egg quality in chickens: influence of albumen and yolk on the size and body composition of near-term embryos in a precocial bird. J. Compar. Physiol. B 168: 17–24. Google Scholar

20.

L. S. Forbes 1991. Insurance offspring and brood reduction in a variable environment: the costs and benefits of pessimism. Oikos 62: 325–332. Google Scholar

21.

S. G. Gebhardt-Henrich , H. Richner 1998. Causes of growth variation and its consequences for fitness. In: J. M. Starck , R. E. Ricklefs (eds). Avian growth and development. Oxford Univ. Press, New York—Oxford, pp. 324–339. Google Scholar

22.

S. G. Gebhardt-Henrich , Noordwijk A. J. van 1994. The genetical ecology of nestling growth in the Great Tit. Environmental influence on the expression of genetic variances during growth. Functional Ecol. 8: 469–476. Google Scholar

23.

J. L. Grinstaff , III E. D. Brodie , E. D. Ketterson 2003. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody translation. Proc. R. Soc. London B 270: 2309–2319. Google Scholar

24.

D. L. Halberson , F. F. Mussel 1922. The relationship of egg weight to chick weight at hatching. Poultry Science 1: 143–144. Google Scholar

25.

W. L. Hill 1995. Intraspecific variation in egg composition. Wilson Bull. 107: 382–387. Google Scholar

26.

P. Hõrak , P. F. Surai , A. P. Møller 2002. Fat-soluble antioxidants in the eggs of Great Tits Parus major in relation to breeding habitat and laying sequence. Avian Science 2: 1–8. Google Scholar

27.

D. C. Houston 1999. Nutritional constraints on breeding in birds. In: N. J. Adams , R. H. Slotow (eds). Proc. 22th Int. Omithol. Congr., Durban, Johannesburg, Bird Life South Africa, pp. 52–66. Google Scholar

28.

D. F. Hoyt 1979. Practical methods of estimating volume and fresh egg weight of bird eggs. Auk 96: 73–77. Google Scholar

29.

A. Järvinen , J. Ylimaunu 1984. Significance of egg size on the growth of nestling Pied Flycatchers Ficedula hypoleuca. Ann. Zool. Fenn. 21: 213–216. Google Scholar

30.

L. Jerzak , M. Bocheński , L. Kuczyński , P. Tryjanowski 2000. Repeatability of size and shape of eggs in the urban Magpie Pica pica (Passeriformes; Corvidae) population. Acta Zool. Crac. 43: 165–169. Google Scholar

31.

M. Konarzewski 1993. The evolution of clutch size and hatching asynchrony in altricial birds: the effect of environmental viability, egg failure and predation. Oikos 67: 97–106. Google Scholar

32.

M. Krumpál , D. Cyprich , P. Fend'a , J. Pinowski 2000–2001. Invertebrate fauna in nests of the House Sparrow Passer domesticus and the Tree Sparrow Passer montanus in central Poland. International Studies on Sparrows 27–28: 35–58. Google Scholar

33.

N. Lebedeva 1994. [Nidicolous and post-nidicolous mortality of young from asynchronous broods of some passerine birds (Passeriformes)]. Zool. Zhurnal 73: 122–131. Google Scholar

34.

N. Lebedeva 1996. [Marking technique on embryo in egg for identification of small passerine (Passeriformes) nestlings after hatching]. Zool. Zhurnal 75: 757–762. Google Scholar

35.

C. M. Lessels , P. T. Boag 1987. Unrepeatable repeatabilities: a common mistake. Auk 104: 116–121. Google Scholar

36.

J. L. Lipar , E. D. Ketterson , V. Jr. Nolan 1999. Intra-clutch variation in testosterone content of Red-winged Blackbird eggs. Auk 116: 231–235. Google Scholar

37.

R. Lowry 1999–2000. Concepts and applications of inferential statistics. Available online:  http://faculty.vassar.edu/lowry/webtext.html  Google Scholar

38.

S. Lundberg 1985. The importance of egg hatchability and nest predation in clutch size evolution in altricial birds. Oikos 45: 110–117. Google Scholar

39.

R. D. Magrath 1992. The effect of egg mass on the growth and survival of Blackbirds: a field experiment. J. Zool. 227: 639–653. Google Scholar

40.

G. Margis 1991. Composition of European Starling eggs. Acta Ornithol. Lit. 4: 68–75. Google Scholar

41.

R. K. Murton , N. J. Westwood , A. J. Isaacson 1974. Factors affecting egg-weight, body weight, and moult of the Wood Pigeon Columba palumbus. Ibis 116: 52–73. Google Scholar

42.

J. A. Nilsson , E. Svensson 1993. Causes and consequences of egg mass variation between and within blue tit clutches. J. Zool. 230: 469–481.  Google Scholar

43.

V. Nolan , C. F. Thompson 1978. Egg volume as a predictor of hatching weight in the Brown-headed Cowbird. Wilson Bull. 90: 353–358.  Google Scholar

44.

A. J. van Noordwijk , L. C. P. Keizer , J. H. van Balen , W. Scharloo 1981. Genetic variation in egg dimensions in natural population in Great Tit. Genetica 55: 221–232. Google Scholar

45.

D. Nordling , M. Andersson , S. Zohari , L. Gustafsson 1988. Reproductive effort reduces specific immune response and parasite resistence. Proc. R. Soc. London B 265: 1291–1298. Google Scholar

46.

R. J. O'Connor 1979. Egg weights and brood reduction in the European Swift (Apus apus). Condor 81:133–145. Google Scholar

47.

M. Ojanen 1983. Composition of the eggs of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca). Ann. zool. Fenn. 20: 57–63. Google Scholar

48.

J. Parsons 1970. Relationship between egg size and post-hatching chick mortality in the Herring Gull (Larus argentatus). Nature 228: 1222–1223. Google Scholar

49.

B. Pinowska , M. Barkowska , J. Pinowski , K.-H. Hahm , N. Lebedeva 2002a. Influence of temperature on Tree Sparrow Passer montanus egg mass according to laying sequence. International Studies on Sparrows 29: 33–47. Google Scholar

50.

B. Pinowska , M. Barkowska , J. Pinowski , K.-H. Hahm , N. Lebedeva 2002b. The efect of egg size on hatching rate in the Tree Sparrow Passer montanus (study in Central Poland). Acta Ornithol. 37: 7–14. Google Scholar

51.

J. Pinowski 1968. Fecundity, mortality, numbers and biomass dynamics of a population of the Tree Sparrow (Passer m. montanus L.). Ekol. Pol. Ser. A 16: 1–58. Google Scholar

52.

J. Pinowski , M. Barkowska , K.-H. Hahm , N. Lebedeva 2000– 2001. Variation in Tree Sparrow Passer montanus eggs. International Studies on Sparrows 27–28: 5–34. Google Scholar

53.

J. Pinowski , K.-H. Hahm , M. Barkowska 1997. The effect of ectoparasitism by the blowfly Protocalliphora azurea (Diptera: Calliphoridae) on nestling Tree Sparrows (Passer montanus). International Studies on Sparrows 22–23: 11–21. Google Scholar

54.

J. Pinowski , B. Pinowska , J. Truszkowski 1973. Escape from the nest and brood desertion by the Tree Sparrow (Passer m. montanus L.), the House Sparrow (Passer d. domesticus L.), and the Great Tit (Parus major L.). In: S. C. Kendeigh, J. Pinowski (eds). Productivity, population dynamics and systematics of granivorous birds, PWN, 397–405 pp. Google Scholar

55.

J. Potti 1993. Environmental, ontogenetic, and genetic variation in egg size of Pied Flycatchers. Can. J. Zool. 71: 1534–1542. Google Scholar

56.

J. Potti 1999. Maternal effects and the pervasive impact of nestlings history on egg size in a passerine bird. Evolution 53: 279–285. Google Scholar

57.

S. L. Ramsay , D. C. Houston 1998. The effect of dietary amino acid composition on egg production in blue tits. Proc. R. Soc. Lond. B 265: 1401–1405. Google Scholar

58.

S. L. Ramsay , D. C. Houston 2003. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis 145: 227–232. Google Scholar

59.

W. L. Reed , A. M. Turner , P. R. Sotherland 1999. Consequences of egg size variation in the Red-winged Blackbird. Auk 116: 549–552. Google Scholar

60.

W. V. Reid , P. D. Boersma 1990. Parental quality and selection on egg size in the Magellanic Penguin. Evolution 44: 1780–1786. Google Scholar

61.

F. J. Richards 1959. A flexible growth function for empirical use. J. Exp. Bot. 10: 290–300. Google Scholar

62.

R. E. Ricklefs 1967. A graphical method of fitting equations to growth curves. Ecology 48: 978–983. Google Scholar

63.

R. E. Ricklefs 1977. Variation in the size and quality of the Starling egg. Auk 94: 167–168. Google Scholar

64.

R. E. Ricklefs 1984. Variation in the size and composition of eggs of the European Starling. Condor 86: 1–6. Google Scholar

65.

R. E. Ricklefs , D. C. Hahn , W. A. Montevecchi 1978. The relationship between egg size and chick size in the Laughing Gull and Japanese Quail. Auk 95: 135–144. Google Scholar

66.

R. E. Ricklefs , S. Peters 1981. Parental components of variance in growth rate and body size of nestling European Starlings Sturnus vulgaris in Eastern Pennsylvania. Auk 98: 39–48. Google Scholar

67.

N. J. Royle , P. Surai , I. R. Hartley 2003. The effect of variation in dietary intake on maternal deposition of antioxidants in zebra finch eggs. Functional Ecol. 17: 472–481. Google Scholar

68.

L. Schifferli 1973. The effect of egg weight on the subsequent growth of nestling Great Tit Parus major. Ibis 115: 549–558. Google Scholar

69.

L. Schmekel 1960. Daten über das Gewichtdes Vogeldottersackes vom Schlüpftag bis Schwinden. Revue Suisse de Zoologie 68:103–109. Google Scholar

70.

H. Schwabl 1993. Yolk is a source of maternal testosterone for developing birds. Proc. Nat. Acad. Sci. USA 90: 11446–11450. Google Scholar

71.

H. Schwabl , D. W. Mock J. A. Gieg 1997. A hormonal mechanism for parental favouritism. Nature 386: 231. Google Scholar

72.

H. G. Smith , M. Bruun 1998. The effect of egg size and habitat on starling nestling growth and survival. Oecologia 115: 59–63. Google Scholar

73.

H. G. Smith , T. Ohlsson , K.-J. Wettermark 1995. Adaptive significance of egg size in the European Starling: Experimental tests. Ecology 76: 1–7. Google Scholar

74.

R. R. Sokal , F. J. Rohlf 1995. Biometry. W. H. Freeman and Company, New York. Google Scholar

75.

S. C. Stearns 1994. The evolution of Life Histories. Oxford Univ. Press. Google Scholar

76.

J. D. Styrsky , K. P. Eckerle , C. F. Thompson 1999. Fitnessrelated consequences of egg mass in nestling house wrens. Proc. R. Soc. Lond. B 266: 1253–1258. Google Scholar

77.

J. P. Veiga 1990. A comparative study of reproductive adaptations in House and Tree Sparrows. Auk 107: 45–49. Google Scholar

78.

J. P. Veiga , J. Vinuela 1993. Hatching asynchrony and hatching success in the House Sparrow: evidence for egg viability hypothesis. Ornis Scand. 24: 237–242. Google Scholar

79.

S. Ward 1995. Causes and consequences of egg size variation in Swallows Hirundo rustica. Avocetta 19: 201–208. Google Scholar

80.

J. Warham 1990. The Petrels, their ecology and breeding systems. Academic press, London. Google Scholar

81.

H. W. Wiley 1950. The influence of egg weight on the prehatching and post-hatching growth rate in the fowl. Poultry Science 29: 570–574. Google Scholar

82.

T. D. Williams 1994. Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biological Review 68: 35–59. Google Scholar
Barbara Pinowska, Miłosława Barkowska, Jan Pinowski, Andrzej Bartha, Kyu-Hwang Hahm, and Natalia Lebedeva "The Effect of Egg Size on Growth and Survival of the Tree Sparrow Passer montanus Nestlings," Acta Ornithologica 39(2), 121-135, (1 December 2004). https://doi.org/10.3161/068.039.0209
Received: 1 June 2004; Accepted: 1 August 2004; Published: 1 December 2004
KEYWORDS
egg size
nestling growth
Passer montanus
survival
Tree Sparrow
Back to Top