Hypobaric hypoxia as an extreme environment in a plateau may have deleterious effects on human health. Studies have indicated that rush entry into a plateau may reduce male fertility and manifest in decreased sperm counts and weakened sperm motility. RNA modifications are sensitive to environmental changes and have recently emerged as novel post-transcriptional regulators in male spermatogenesis and intergenerational epigenetic inheritance. In the present study, we generated a mouse hypoxia model simulating the environment of 5500 m in altitude for 35 days, which led to compromised spermatogenesis, decreased sperm counts, and an increased sperm deformation rate. Using this hypoxia model, we further applied our recently developed high-throughput RNA modification quantification platform based on liquid chromatography with tandem mass spectrometry, which exhibited the capacity to simultaneously examine 25 types of RNA modifications. Our results revealed an altered sperm RNA modifications signature in the testis (6 types) and mature sperm (11 types) under the hypoxia model, with 4 types showing overlap (Am, Gm, m7G, and m22G). Our data first drew the signature of RNA modification profiles and comprehensively analyzed the alteration of RNA modification levels in mouse testis and sperm under a mouse hypoxia model. These data may be highly related to human conditions under a similar hypoxia environment.
Summary sentence
Using high-throughput LC–MS/MS, our study revealed an altered signature of RNA modifications in the mouse testis and sperm under a hypoxia model. These data may be strongly related to human conditions in a similar hypoxia environment.
Graphical Abstract