The formation of fertilisation-competent sperm requires spermatid morphogenesis (spermiogenesis), a poorly understood program that involves complex coordinated restructuring and specialised cytoskeletal structures. A major class of cytoskeletal regulators are the actin-related proteins (ARPs), which include conventional actin variants, and related proteins that play essential roles in complexes regulating actin dynamics, intracellular transport, and chromatin remodeling. Multiple testis-specific ARPs are well conserved among mammals, but their functional roles are unknown. One of these is actin-like 7b (Actl7b) that encodes an orphan ARP highly similar to the ubiquitously expressed beta actin (ACTB). Here we report ACTL7B is expressed in human and mouse spermatids through the elongation phase of spermatid development. In mice, ACTL7B specifically localises to the developing acrosome, within the nucleus of early spermatids, and to the flagellum connecting region. Based on this localisation pattern and high level of sequence conservation in mice, humans, and other mammals, we examined the requirement for ACTL7B in spermiogenesis by generating and characterising the reproductive phenotype of male Actl7b KO mice. KO mice were infertile, with severe and variable oligoteratozoospermia (OAT) and multiple morphological abnormalities of the flagellum (MMAF) and sperm head. These defects phenocopy human OAT and MMAF, which are leading causes of idiopathic male infertility. In conclusion, this work identifies ACTL7B as a key regulator of spermiogenesis that is required for male fertility.
Graphical Abstract