Ring species are widely recognized as one of the best natural illustrations of species formation. A ring species is a circular arrangement of populations with one boundary characterized by reproductive isolation, but intergradation among populations elsewhere. They form when populations disperse around a central barrier and form a secondary contact characterized by reproductive isolation. Ring species are often presented as a taxonomic conundrum, because the presence of a single boundary exhibiting reproductive isolation leaves the ring of populations uncomfortably situated between one and two species. Here we review the ring species concept, with a focus on the salamander Ensatina eschscholtzii and the Greenish Warbler, Phylloscopus trochiloides. We argue that ring species demonstrate the gradual nature of species formation, and thereby illustrate the model of species formation originally put forth by Darwin. We also argue that ring species have become overly idealized, with a focus on strict criteria to the detriment of evolutionary lessons. Like all models of evolutionary change, the ring species concept is an oversimplification, and an ideal ring species has never been found. Finally, we review ring species in light of the general lineage concept of species, and argue that ring species status, while nicely accommodated by recognizing a single species, is independent of taxonomy. The essential features of a ring species are a biogeographic history resulting in a ring-like distribution, and the presence of a single species border characterized by reproductive isolation. Under the general lineage concept, reproductive isolation is a contingent, but not necessary, property of evolutionary lineages. Whether one considers a ring species complex to be one species or many does not change the evolutionary message, and the problems (and lessons) presented by ring species do not go away with taxonomic changes.
How to translate text using browser tools
30 March 2016
Wherefore and Whither the Ring Species?
Shawn R. Kuchta,
David B. Wake
ACCESS THE FULL ARTICLE