BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 January 2005 QUANTITATIVE TRAIT LOCI AFFECTING δ13C AND RESPONSE TO DIFFERENTIAL WATER AVAILIBILITY IN ARABIDOPSIS THALIANA
Neil J. Hausmann, Thomas E. Juenger, Sáunak Sen, Kirk A. Stowe, Todd E. Dawson, Ellen L. Simms
Author Affiliations +
Abstract

Phenotypic plasticity is an important response mechanism of plants to environmental heterogeneity. Here, we explored the genetic basis of plastic responses of Arabidopsis thaliana to water deficit by experimentally mapping quantitative trait loci (QTL) in two recombinant inbred populations (Cvi × Ler and Ler × Col). We detected genetic variation and significant genotype-by-environment interactions for many traits related to water use. We also mapped 26 QTL, including six for carbon isotope composition (δ13C). Negative genetic correlations between fruit length and fruit production as well as between flowering time and branch production were corroborated by QTL colocalization, suggesting these correlations are due to pleiotropy or physical linkage. Water-limited plants were more apically dominant with greater root:shoot ratios and higher δ13C (higher water-use efficiency) when compared to well-watered plants. Many of the QTL effects for these traits interacted significantly with the irrigation treatment, suggesting that the observed phenotypic plasticity is genetically based. We specifically searched for epistatic (QTL-QTL) interactions using a two-dimensional genome scan, which allowed us to detect epistasis regardless of additive genetic effects. We found several significant QTL-QTL interactions including three that exhibited environmental dependence. These results provide preliminary evidence for proposed genetic mechanisms underlying phenotypic plasticity.

Neil J. Hausmann, Thomas E. Juenger, Sáunak Sen, Kirk A. Stowe, Todd E. Dawson, and Ellen L. Simms "QUANTITATIVE TRAIT LOCI AFFECTING δ13C AND RESPONSE TO DIFFERENTIAL WATER AVAILIBILITY IN ARABIDOPSIS THALIANA," Evolution 59(1), 81-96, (1 January 2005). https://doi.org/10.1554/04-104
Received: 13 February 2004; Accepted: 1 October 2004; Published: 1 January 2005
JOURNAL ARTICLE
16 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Arabidopsis thaliana
Epistasis
gene-environment interaction
QUANTITATIVE GENETICS
QUANTITATIVE TRAIT LOCI
stable isotopes
δ13C
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top