How to translate text using browser tools
1 November 2005 PHYLOGENETIC AND ENVIRONMENTAL COMPONENTS OF MORPHOLOGICAL VARIATION: SKULL, MANDIBLE, AND MOLAR SHAPE IN MARMOTS (MARMOTA, RODENTIA)
Radhekshmi Caumul, P. David Polly
Author Affiliations +
Abstract

The phenotype is a product of its phylogenetic history and its recent adaptation to local environments, but the relative importance of the two factors is controversial. We assessed the effects of diet, habitat, elevation, temperature, precipitation, body size, and mtDNA genetic divergence on shape variation in skulls, mandibles, and molars, structures that differ in their genetic and functional control. We asked whether these structures have adapted to environment to the same extent and whether they retain the same amount of phylogenetic signal. We studied these traits in intra- and interspecific populations of Eurasian marmots whose last common ancestor lived 2–5 million years ago. Path Analysis revealed that body size explained 10% of variation in skulls, 7% in mandibles, and 15% in molars. Local vegetation explained 7% of variation in skulls, 11% in mandibles, and 12% in molars. Dietary category explained 25% of variation in skulls, 11% in mandibles, and 9% in molars. Cyt b mtDNA divergence (phylogeny) explained 15% of variation in skulls, 7% in mandibles, and 5% in molars. Despite the percentages of phylogenetic variance, maximum-likelihood trees based on molar and skull shape recovered most phylogenetic groupings correctly, but mandible shape did not. The good performance of molars and skulls was probably due to different factors. Skulls are genetically and functionally more complicated than teeth, and they had more mathematically independent components of variation (5–6-in skulls compared to 3-in molars). The high proportion of diet-related variance was not enough to mask the phylogenetic signal. Molars had fewer independent components, but they also have less ecophenotypic variation and evolve more slowly, giving each component a proportionally stronger phylogenetic signal. Molars require larger samples for each operational taxonomic unit than the other structures because the proportion of within-taxon to between-taxon variation was higher. Good phylogenetic signal in quantitative skeletal morphology is likely to be found only when the taxa have a common ancestry no older than hundreds of thousands or millions of years (1% to 10% mtDNA divergence)—under these conditions skulls and molars provide stronger signal than mandibles.

Radhekshmi Caumul and P. David Polly "PHYLOGENETIC AND ENVIRONMENTAL COMPONENTS OF MORPHOLOGICAL VARIATION: SKULL, MANDIBLE, AND MOLAR SHAPE IN MARMOTS (MARMOTA, RODENTIA)," Evolution 59(11), 2460-2472, (1 November 2005). https://doi.org/10.1554/05-117.1
Received: 28 February 2005; Accepted: 8 September 2005; Published: 1 November 2005
JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
geometric morphometrics
Marmota
maximum-likelihood
morphology
phylogeny
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top