BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 June 2005 ECOLOGICAL AND EVOLUTIONARY DIVERSIFICATION OF THE SEED BEETLE GENUS STATOR (COLEOPTERA: CHRYSOMELIDAE: BRUCHINAE)
Geoffrey E. Morse, Brian D. Farrell
Author Affiliations +
Abstract

Ehrlich and Raven's (1964) hypothesis on coevolution has stimulated numerous phylogenetic studies that focus on the effects of plant defensive chemistry as the main ecological axis of phytophagous insect diversification. However, other ecological features affect host use and diet breadth and they may have very different consequences for insect evolution. In this paper, we present a phylogenetic study based on DNA sequences from mitochondrial and protein-coding genes of species in the seed beetle genus Stator, which collectively show considerable interspecific variation in host affiliation, diet breadth, and the dispersal stage of the seeds that they attack. We used comparative analyses to examine transitions in these three axes of resource use. We argue that these analyses show that diet breadth evolution is dependent upon colonizing novel hosts that are closely or distantly related to the ancestral host, and that oviposition substrate affects the evolution of host-plant affiliation, the evolution of dietary specialization, and the degree to which host plants are shared between species. The results of this study show that diversification is structured by interactions between different selective pressures and along multiple ecological axes.

Geoffrey E. Morse and Brian D. Farrell "ECOLOGICAL AND EVOLUTIONARY DIVERSIFICATION OF THE SEED BEETLE GENUS STATOR (COLEOPTERA: CHRYSOMELIDAE: BRUCHINAE)," Evolution 59(6), 1315-1333, (1 June 2005). https://doi.org/10.1554/04-140
Received: 3 March 2004; Accepted: 6 March 2005; Published: 1 June 2005
JOURNAL ARTICLE
19 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Coevolution
cytochrome oxidase 1
elongation factor 1-alpha
insect-plant interaction
molecular systematics
specialization
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top