Translator Disclaimer
1 March 2014 Combinations of Metarhizium anisopliae with Chemical Insecticides and their Effectiveness in Mahanarva fimbriolata (Hemiptera: Cercopidae) Control on Sugarcane
Author Affiliations +
Abstract

Some insecticides can be used jointly with entomopathogenic fungi, and therefore the combination of chemical and biological control measures can be a safe and effective method to control insect pests. The aim of this study was to evaluate the costs and efficacy of combinations of Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) with thiamethoxam and imidacloprid on spittlebug (Mahanarua fimbriolata (Stål); Hemiptera: Cercopidae) control on sugarcane. The experiment was conducted as a randomized block design (RBD) with 10 treatments and 4 replications. The treatments included a control (untreated), thiamethoxam (250 g ha-1), imidacloprid (700 g ha-1), M. anisopliae (M. a.) (3 × 1012 conidia ha-1), A1 (3 × 1012 M. a. conidia ha-1 65 g ha-1 of thiamethoxam), A2 (3 × 1012 M. a. conidia ha-1 125 g ha-1 of thiamethoxam), A3 (3 × 1012 M. a. conidia ha-1 187.5 g ha-1 of thiamethoxam), A4 (3 × 1012 M. a. conidia ha-1 175 g ha-1 of imidacloprid), A5 (3 × 1012 M. a. conidia ha-1 350 g ha-1of imidacloprid), and A6 (3 × 1012 M. a. conidia ha-1 525g ha-1 of imidacloprid). The reductions in the numbers of M. fimbriolata nymphs per treatment compared to the control were similar at 15 DAT (days after treatment) in all treatments except combination A5 (M. anisopliae and thiamethoxam). At 30 DAT, the numbers of nymphs were significantly reduced in all treatments except A3, and their effectiveness ranged from 14.28% to 92.85%. At 45 DAT the numbers of M. fimbriolata nymphs per treatment were significantly reduced in the following treatments: imidacloprid alone at 700g ha-1, A1, A2, A3, A4 and A6; and the combinations A1 and A2 caused the lowest M. fimbriolata nymph infestations and effectiveness rates of 77.41 and 87.09 %, respectively. At 75 DAT the 2 best control efficacies occurred in treatments A1 (3 × 1012 M. a. conidia ha-1 of 65g ha-1 of thiamethoxam) (82.1%) and A5 (78.6%) (3 × 1012 M. a. conidia ha-1 350 g ha-1of imidacloprid). At 90 DAT the number of nymphs in the control had increased 2.8 fold over the number at 75 DAT. Very good control efficacies at 90 DAT occurred in all treatments with the combination of the fungus with an insecticide. At 105 DAT the numbers of nymphs had surged in all treatments, and no treatment provided effective control. The treatments with the highest earnings per hectare were A1 (3 × 1012 M. a. conidia ha-1 65 g thiamethoxam) and M. anisopliae alone at the recommended dose of 3 × 10 12 M. a. conidia ha-1. Our findings demonstrate the effectiveness of using either thiamethoxam or imidacloprid in combination with M. anisopliae to control M. fimbriolata nymphs on sugarcane, but greater net earnings per hectare occurred with the lowest rate of the thiamethoxam combination than with any of the imidacloprid combinations.

Brazil produces the most sugarcane (Ravaneli et al. 2011; Vacarí et al. 2012; Simöes et al. 2012; Rossato et al. 2013), and Mahanarva fimbriolata (Stal) (Hemiptera: Cercopidae) is one of the major pests of this crop (Garcia et al. 2006; James et al. 2011; Garcia et al. 2011; Volpe et al. 2012). Nymphs and adults of M. fimbriolata can cause injuries and reduce of sugarcane productivity by 20 to 40 tonnes per hectare (Mendonça 2005). Furthermore, attacked sugarcane stalks lose quality, reducing sugar and alcohol production capacity (Dinardo-Miranda et al. 2002; Madaleno et al. 2008; Garcia et al. 2010; Carvalho et al. 2011; Korndörfer et al. 2011).

Chemical insecticides and the entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), are used to control M. fimbriolata nymphs and adults on sugarcane (Dinardo-Miranda et al. 2004a, 2004 b; Loureiro et al. 2005; Li et al. 2010; Cuarán et al. 2012). Some chemical insecticides that are compatible with entomopathogenic fungi and other biological control agents may be used in various combinations to provide safe and efficient control of insect pests (Asi et al. 2010; Russell et al. 2010; Bitsadze et al. 2013).

The insecticides, imidacloprid and thiamethoxam, do not reduce the viability, vegetative growth, conidial production, and germination of M. anisopliae and this demonstrates the compatibility of these insecticides with this entomopathogen (Botelho & Monteiro 2011; Akbar et al. 2012; Silva et al. 2013).

Thus, the combination of chemical insecticides and M. anisopliae can used for the management of M. fimbriolata. The insecticide causes insect death in less time, and colonization of individuals killed by the entomopathogenic fungus increases the residual pest control effect (Dinardo-Miranda et al. 2008; Jin et al. 2011). This demonstrates the importance of understanding the combination of entomopathogenic fungi with insecticides in sugarcane fields.

The aim of this study was to evaluate the costs and efficacies of combinations of M. anisopliae with imidacloprid and thiamethoxam in M. fimbriolata control on sugarcane.

Materials and Methods

The pest control materials used in this study were as follows: Metarhizium anisopliae (Meitê®) procured from Ballagro Agro Tecnologia, Bom Jesus dos Perdões city, São Paulo state, Brazil; thiamethoxam (Actara 250 WG®) obtained from Syngenta Proteção de Cultivos Ltda, Paulínia city, São Paulo state, Brazil; and imidacloprid (Evidence 700 WG®) obtained from Bayer Crop Science, São Paulo city, São Paulo state, Brazil.

The experiment was conducted in a sugarcane field of the company “Energética Santa Helena Ltda” in Nova Andradina, Mato Grosso do Sul State, from Nov 2012 to Apr 2013. The experimental area (S 22° 16′ 73″ W 53° 18′ 23″, and 380 m) was planted with sugarcane (variety ‘SP813250’) with no flaws in the sprouting plants.

The plots included 10 rows of sugarcane spaced 1.4 m apart and 10 m long, totaling an areas of 140 m2. The experiment was a randomized block design (RBD) with 10 treatments and 4 replications. The treatments included the control (untreated), thiamethoxam (250 g ha-1), imidacloprid (700 g ha-1), M. anisopliae (M. a.) (3 × 1012 conidia ha-1), Al (3 × 1012 M. a. conidia ha-1+ 65 g ha-1 of thiamethoxam), A2 (3 × 1012 M. a. conidia ha-1+ 125 g ha-1 of thiamethoxam), A3 (3 × 1012M. a. conidia ha-1 + 187.5 g ha-1 of thiamethoxam), A4 (3 × 1012 M. a. conidia ha-1 + 175 g ha-1 of imidacloprid), A5 (3 × 1012 M. a. conidia ha-1 + 350 g ha-1of imidacloprid), and A6 (3 × 1012 M. a. conidia ha-1 + 525 g ha-1 of imidacloprid).

The experiment was started on 23 Nov 2012, when the level of infestation of M. fimbriolata in the experimental area reached on averaged 3.82 ± 0.23 nymphs (average ± standard error) per linear foot (30.4 cm) of furrow of sugarcane (Mendonça 2005; Dinardo-Miranda et al. 2008; Table 1). Since the application of mixtures of insecticides is prohibited in Brazil, each product was applied with a separate Jacto® sprayer (Pompéia city, São Paulo State, Brazil) that was calibrated to apply 150 L ha-1 (Mendonça 2005). The spray was directed at the base of the stumps such that 30% of the spray volume reached the stems and 70% reached the sugarcane plant roots (Loureiro et al. 2005). The surfactant Tween® (0.01% polysorbate 80) was used in the treatments of fungal suspensions.

Table 1.

Pretreatment infestation by the spittle bug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane in the experimental area.

t01_146.gif

Nymphs of M. fimbriolata were sampled every 2 weeks, up to 105 days after treatment (DAT) (Mendonça 2005) in 2 linear feet (60.8 cm) of furrow planting of sugarcane in each plot. The nymphs of M. fimbriolata on the basal internodes of plants were counted after removal of the residual straw.

Climate data (average temperature, relative humidity, and rainfall) were obtained from Inmet (Instituto Nacional de Meteorologia) (Fig. 1) to establish the relationship between the infestation of M. fimbriolata and abiotic factors. The value of total recoverable sugar (TRS) (Landell et al. 1999) was obtained from 20 sugarcane stalks removed randomly per treatment on 15 Apr 2013.

UDOP (2013) provided the value of a tonne of sugar per ha, the estimated yield (total recoverable sugar, TRS) per ha of 68 tonnes, which is the average yield of Mato Grosso do Sul, State (Unica 2013) x value of a tonne per ha], maintenance cost of sugarcane (MCS) excluding the costs of pest control materials and their application for the control of M. fimbriolata (Udop 2013), costs of pest control materials and their application and earnings per ha [(the estimated value of the TRS produced per ha) — MCS - control cost)], were calculated in dollars (US$). The values of outsourced services and purchased products to manage the sugarcane field and to control M. fimbriolata were obtained from consulting firms and agricultural database of Udop (2013) (Table 2).

The population data for nymphs of M. fimbriolata were subjected to analysis of variance, and the significant means were compared by the Scott-Knott test at 5% probability. The efficacy of these treatments was calculated using Abbott's formula (Abbott 1925).

Results

Table 3 shows that at 15 DAT the number of nymphs were significantly reduced compared to the control in all treatments except A5 (3 × 1012 M. a. conidia ha-1 of + 350 g ha-1 of imidacloprid).

Fig. 1.

Cumulative precipitation (mm), average temperature (°C), relative humidity (%) and number of Mahanarvafimbriolata (Hemiptera: Cercopidae) nymphs in the experimental area at 15 to 105 days after application (DAT) of insect control treatments.

f01_146.jpg

At 30 DAT, the numbers of nymphs were significantly reduced compared to the control in all treatments except A3 (M. anisopliae plus the high rate of thiamethoxam) (Table 3). The efficacies of the treatments ranged from 14.28% to 92.85% (Table 4).

At 45 DAT the numbers of M. fimbriolata nymphs per treatment were significantly reduced compared to the control in the following treatments: imidacloprid alone at 700g ha-1, Al, A2, A3, A4 and A6 (Table 3). Again the performance of A5 was anomalous.

At 60 DAT, the numbers of nymphs were significantly reduced compared to the control in all treatments. The best efficacies occurred in A1 (3 × 1012 M. a. conidia ha-1 + 65g ha-1 of thiamethoxam) and A2 (3 × 1012 M. a. conidia ha-1 + 125 g ha-1 of thiamethoxam), which 77.4% and 87.1%, respectively (Table 4).

Table 2.

Maintenance costs per ha of sugarcane (MCS) at Nova And radina, Mato Grosso Do Sul State in 2012 and 2013.

t02_146.gif

At 75 DAT, the numbers of nymphs were significantly reduced to the greatest extent in the following 3 treatments: A1 (3 × 1012 M. a. conidia ha-1 + 65g ha-1 of thiamethoxam), A3 (3 × 1012 M.a. conidia ha-1 + 187.5 g ha-1 of thiamethoxam), and A5 (3 × 1012 M. a. conidia ha-1 + 350 g ha-1 of imidacloprid). Also the numbers of nymphs were significantly reduced compared to the control in all of the remaining treatments except A2 and A6, yet the numbers of nymphs in the latter 2 treatments were numerically less than in the control. The 2 best control efficacies relative to the control at 75 DAT occurred in treatments A1 (3 × 1012 M. a. conidia ha-1 of + 65g ha-1 of thiamethoxam) (82.1%) and A5 (78.6%) (3 × 1012 M. a. conidia ha-1 + 350 g ha-1 of imidacloprid).

At 90 DAT the number of nymphs in the control had increased 2.8 fold over the number at 75 DAT. However, the numbers of nymphs were significantly reduced compared to the control in the following treatments: thiamethoxam (250 g ha-1), Al, A2, A3, A4, and A5. The 2 best control efficacies a 90 DAT occurred in treatments A1 (3 × 1012 M. a. conidia ha-1 + 65g ha-1 of thiamethoxam) (85.9%), thiamethoxam (250 g ha-1) (83.3%) and A2 (3 × 1012 conidia ha-1 of M. a. + 125 g ha-1 of thiamethoxam) (82.1%).

At 105 DAT the number of nymphs in the control had increased 2 fold over the number at 90 DAT. Also at 105 DAT, the number of nymphs were significantly reduced compared to the control in all treatments. However the numbers of nymphs in all treatments were equal or greater than the number in the control , which indicated that none of the treatments could still provide an economically useful level of control.

Table 3.

Infestation Levels of Mahanarva fimbriolata (Hemiptera: Cercopidae) nymphs per linear foot [30.4 cm] in sugarcane plots treated either with thiamethoxam, imidacloprid, or metarhizium anisopliae, or with the combination of either insecticide with the fungus.

t03_146.gif

The high rainfall, average temperature, and relative humidity increased the efficiency of the combinations and the fungus M. anisopliae alone (Fig. 1 and Table 3). However, the greatest rainfall, mainly at 75 DAT, increased the population of nymphs of M. fimbriolata on the plots treated with insecticides (Fig. 1 and Table 3).

The values of TRS were higher with the combination A1 (3 × 1012 M. a. conidia ha-1 + 65 g ha-1 of thiamethoxam), M. anisopliae (3 × 1012 conidia ha-1), thiamethoxam (250 g ha-1), and imidacloprid (700 g ha-1) and, consequently, the amount paid per tonne, and earnings per ha (Table 5). The costs of acquisition and application of the product in the following treatments: M. anisopliae, combination Al and thiamethoxan (250 g ha-1) were US$ 29.27, US$ 41.02, and US$ 64.31, respectively. In other treatments, the cost of M. fimbriolata nymph control ranged from US$ 38.46 to US$ 56.84. The treatments with the highest net earnings per hectare were in treatments A1 (3 × 1012 M. a. conidia ha-1 + 65 g thiamethoxam) and M. anisopliae (3 × 1012 M. a. conidia ha-1) alone at the recommended dose. Lower earning per ha were obtained the combinations A4 (3 × 1012 M.a. conidia ha-1 + 175 g ha-1 de imidacloprid ), A2 (3 × 1012 M. a. conidia ha-1 + 125 g ha-1 of thiamethoxam), A5 (3 × 1012 M. a. conidia ha-1 + 350 g ha-1 of imidacloprid), and A3 (3 × 1012 M. a. conidia ha-1 + 187.5 g ha-1 of thiamethoxam), respectively (Table 5).

Discussion

Almost all treatments had lower numbers of spittlebugs than the control at 15 and 30 DAT, which confirms the susceptibility of M. fimbriolata nymphs to the 2 insecticides, M. anisopliae, and combinations of the insecticides plus the fungus. However some anomalies occurred. For example treatment A5 appeared to be infective at 15 DAT and 45 DAT, but this treatment was quite effective at the other times. Likewise treatment A3 appeared to be ineffective at 30 DAT, but this treatment was effective at all other times. These anomalies in the data probably are the result of the highly aggregated distribution of the spittlebugs.

Furthermore, an additive interaction between each of the chemical insecticides and the fungus was observed in this experiment like that observed for Tibraca limbatiuentris Stål (Hemiptera: Pentatomidae) (Quintela et al. 2013). However, this should not be generalized because the control efficacy depends on the weather, the mode of action of the chemical, and the M. anisopliae isolate used to control M. fimbriolata (Dinardo-Miranda et al. 2004a; Loureiro et al. 2005; James et al. 2011). On the other hand, the genetic constitution of the pest population (Quinelato et al. 2012), adaptations, and mechanisms of insecticide resistance (Dubovskiy et al. 2013) may affect the efficacy of control methods.

Table 4.

Percent control (Abbott - %) of Mahanarva fimbriolata (Hemiptera: Cercopidae) by of thiamethoxam, imidacloprid, metarhizium anisopliae and the combination of each insecticide with the fungus at 15 day intervals post application.

t04_146.gif

Higher numbers of M. fimbriolata nymphs with thiamethoxam (60 DAT) and imidacloprid (75, 90, and 105 DAT) show that the time of application time affect the efficiency of the chemicals (Dinardo-Miranda et al. 2004a; George et al. 2007), because high rainfall can decrease their residual effects (Carvalho et al. 2011). In addition, the insecticides imidacloprid and thiamethoxam, at recommended doses, are not selective for some non-target insects (Zhao et al. 2012; Funderburk et al. 2013), which may explain the higher incidence of M. fimbriolata in the plots treated with these products. Imidacloprid can cause negative impacts on insects of the family Syrphidae (Easton & Goulson 2013) and can't be selective against the predator of M. fimbriolata nymphs, Salpingogaster nigra Schiner (Diptera: Syrphidae). On the other hand, low doses of thiamethoxam are selective against Apis melifera L. (Hymenoptera: Apidae) (El Hassani et al. 2007). This favors the maintenance of certain beneficial insects in the crop and can explain the efficacy of some combinations of M. anisopliae with this insecticide. In addition, low doses of thiamethoxam increased the susceptibility of T. limbativentris to M. anisopliae (Quintela et al. 2013).

The highest efficacy of controlling M. fimbriolata with the combinations A1, A2, and A3 at 30, 60, 75, and 90 DAT can suggest that the thiamethoxam is more suitable than imidacloprid for use with M. anisopliae. Contact of M. anisopliae with thiamethoxam did not affect the biological characteristics of the fungus, demonstrating compatibility between these two control agents (Botelho & Monteiro 2011; Akbar et al. 2012; Silva et al. 2013). Furthermore, this insecticide and the fungus M. anisopliae are most often used to control M. fimbriolata in sugarcane fields (Dinardo-Miranda et al. 2004 a, 2004 b).

The TRS was higher in group A1 (3 × 1012 M. a. conidia ha-1 + 65 g ha-1 of thiamethoxam) with 96.19. The price per tonne of sugarcane is based on the TRS value, i.e., the higher the value obtained, the higher the price per tonne. The combination of 3 × 1012 M. a. conidia ha-1 + 65 g ha-1 of thiamethoxam was found to be the most effective in increasing the price per tonne per ha. Similar values of TRS in the other treatments may be due to the combination M. anisopliae with the insecticides. The 2 chemical products kill insects faster than M. anisopliae (Dinardo-Miranda et al. 2002; Carvalho et al. 2011), and dead individuals are colonized by this fungus (Dinardo-Miranda et al. 2008; Jin et al. 2011). Thus, entomopathogenic fungi can increase their density in the crop by infecting healthy individuals with inoculum from carcasses (Bruck 2005). In addition, M. anisopliae has a high ability to persist in the field (Bruck & Donahue 2007; James et al. 2012), which decreases the probability of resurgence of pest (GuerreroGuerra et al. 2013).

The price of the combinations ranged only from US$ 38.46 to US$ 64.31, indicating that it is affordable to control M. fimbriolata with a combination of M. anisopliae and a chemical insecticide. However, use of the combination of 3 × 1012 M. a. conidia ha-1 + 65 g ha-1 of thiamethoxam produced lower costs, more tonnes of sugarcane ha-1, the greatest estimated gross income per ha of US$ 1242.77 and the greatest net earnings per ha of US$ 556.16 (Table 5). On the other hand, the plant age can also influence the productivity of the sugarcane (Dinardo-Miranda et al. 2008), so that plants in a more advanced developmental stage may have a higher yield of TRS. The value of the TRS was obtained with 8-month-old plants, but TRS of older plants may be higher.

Table 5.

Total recoverable sugar (trs), quotation of trs (cot. trs), price per tonne, gross income estimate per ha, maintenance cost of sugarcane fields per ha (mcs), cost control of Mahanarva fimbriolata (Hemiptera: Cercopidae) and net earnings per ha in the treatments with insecticides, Metarhizium anisopliae and certain combinations.

t05_146.gif

Thus, the combination of the entomopathogenic fungus, M. anisopliae, with thiamethoxan or imidacloprid can reduce infestations of M. fimbriolata to sufficiently low levels to protect the sugarcane. Nevertheless, factor influencing the effectiveness of combinations of M. anisopliae with either thiamethoxan or imidacloprid need to be better understood, and further relevant studies should be conducted.

Acknowledgments

To “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES)” and “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)” for financial support. We thank undergraduate student Gabriela Piñeyro for translating the abstract to spanish. Global Edico Services edited and rewrote this manuscript.

References Cited

  1. W. S. Abbott 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–266. Google Scholar
  2. S. Akbar , S. Freed , A. Hameed , H. T. Gul , M. Akmal , M. N. Malik , M. Naeem , and M. B. Khan 2012. Compatibility of Metarhizium anisopliae with different insecticides and fungicides. African J. Microbiol. Res. 6: 3956–3962. Google Scholar
  3. M. R. Asi , M. H. Bashir , M. Afzal , M. Ashfaq , and S. T. Sahi 2010. Compatibility of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan J. Bot. 42: 4207–4214. Google Scholar
  4. N. Bitsadze , S. Jaronski , V. Khasdan , E. Abashidze , M. Abashidze , A. Latchininsky , D. Samadashvili , L Sokhadze, M. Rlppa , L Ishaaya , and A. R. Horowitz 2013. Joint action of Beauveriabassiana and the insect growth regulators diflubenzuron and novaluron, on the migratory locust, Locustamigratoria. J. Pest. Sci. 86: 293–300. Google Scholar
  5. A. A. A. Botelho , and A. C. Monteiro 2011. Sensibilidade de fungos entomopatogênicos a agroquímicos usados no manejo da cana-de-açúcar. Bragantia 70: 361–369. Google Scholar
  6. D. J. Bruck 2005. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol. Control. 32: 155–163. Google Scholar
  7. D. J. Bruck and K. M. Donahu 2007. Persistence of Metarhizium anisopliae incorporated into soilless potting media for control of the black vine weevil, Otiorhynchus sulcatus in container-grown ornamentals. J. Invert. Pathol. 95: 146–150. Google Scholar
  8. L. W. T. Carvalho , S. M. F. Broglio-Micheletti , L. H. T. Carvalho , N. S. Dias , and K. Girón-Pérez 2011. Incidência de Mahanarva fimbriolata después de aplicaciones de Metarhizium anisopliae e imidacloprid en caña de azúcar. Caatinga 24: 20–26. Google Scholar
  9. V. L. Cuarán , U. C. Valderrama , A. E. B. Pardey , N. C. M. Cobo , G. D. R. Sánchez , C. A. M. Gil , and L. A. G. Laverde 2012. Método para evaluar el daño de los salivazos (Hemiptera: Cercopidae) sobre caña de azúcar Saccharum spp. Rev. Colombiana Entomol. 38: 171–176. Google Scholar
  10. L. L. Dinardo-Miranda , V. Garcia , and V. J. Parazzi 2002. Efeito de inseticidas no controle de Mahanarvafimbriolata (Stål) (Hemiptera: Cercopidae) e de nematóides fitoparasitos na qualidade tecnológica e na produtividade da cana-de-açùcar. Neotrop. Entomol. 31: 609–614. Google Scholar
  11. L. L. Dinardo-Miranda , A. L. Coelho , and J. M. G. Ferreira 2004a. Influência da época de aplicaçâo de inseticidas no controle de Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) na qualidade e produtividade da cana-de-açúcar. Neotrop. Entomol. 33: 91–98. Google Scholar
  12. L. L. Dinardo-Miranda , A. C. M. Vasconcelos , J. M. G. Ferreira , C. A. Garcia , A. L. Coelho , and M. A. Gil 2004b. Eficiência de Metarhiziumanisopliae (Metsch.) no controle de Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) em cana-deaçúcar. Neotrop. Entomol. 33: 743–749. Google Scholar
  13. L. L. Dinardo-Miranda , J. P. Pivetta , and J. V. Fracasso 2008. Economic injury level for sugarcane caused by the spittlebug. Sci. Agrie. 65: 16–24. Google Scholar
  14. I. M. Dubovskiy , M. M. A. Whitten , O. N. Yaroslavtseva , C. Greig , V. Y. Kryukov , E. V. Grizanova , K. Mukherjee , A. Vilcinskas , V. V. Glupov , and T. M. butt 2013. Can insects develop resistance to insect pathogenic fungi? PLoS ONE. 8: 1–8 (e60248). Google Scholar
  15. A. K. El Hassani , M. Dacher , V. Gary , M. Lambin , M. Gauthier , and C. Armengaud 2007. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of honey bees (Apis mellifera). Arch. Environ. Contam. Toxicol. 54: 653–61. Google Scholar
  16. A. H. Easton , and D. Goulson 2013. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field realistic concentrations. PLoS ONE. 8: 1–4 (e54819). Google Scholar
  17. J. Funderburk , M. Srivastava , C. Funderburk , and S. Mcmanus 2013. Evaluation of imidacloprid and cyantraniliprole for suitability in conservation biological control program for Orius insidiosus (Hemiptera: Anthocoridae) in field pepper. Fla. Entomol. 96: 229–231. Google Scholar
  18. J. F. Garcia , E. Grisoto , J. D. Vendramim , and P. S. M. Botelho 2006. Bioactivity of neem, Azadirachtaindica, against spittlebug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane. J. Econ. Entomol. 99: 2010–2014. Google Scholar
  19. D. B. Garcia , G. C. Ravaneli , L. L. Madaleno , M. A. Mutton , and M. J. R. Mutton 2010. Damages of spittlebug on sugarcane quality and fermentation process. Sci. Agrie. 67: 555–561. Google Scholar
  20. J. F. Garcia , S. S. Prado , J. D. Vendramim , and P. S. M. Botelho 2011. Effect of sugarcane varieties on the development of Mahanarva fimbriolata (Hemiptera: Cercopidae). Rev. Colombiana Entomol. 37: 16–20. Google Scholar
  21. J. George , C. T. Redmond , R. N. Royalty , and D. A. Potter 2007. Residual effects of imidacloprid on Japanese beetle (Coleoptera: Scarabaeidae) oviposition, egg hatch, and larval viability in turfgrass. J. Econ. Entomol. 100: 431–439. Google Scholar
  22. C. Guerrero-Guerra , M. D. Reyes-Montes , C. Toriello , V. Hernandez-Velazquez , I. Santiago-Lopez , L. Mora-Palomino , M. E. Calderon-Segura , S. D. Fernandez , and C. Calderon-Ezquerro 2013. Study of the persistence and viability of Metarhizium acridum in agriculture Mexico. Aerobiologia 29: 249–261. Google Scholar
  23. INMET (Instituto Nacional De Meteorología). 2013.  http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesautomaticas. Accessed 28 Jul 2013. Google Scholar
  24. S. F. Jin , M. G. Feng , S. H. Ying , W. J. Mu and J. Q. Chen 2011. Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae with low rate buprofezin. Pest. Mgt. Sci. 67: 36–43. Google Scholar
  25. A. P. Korndörfer , E. Grisoto , and J. Vendramim 2011. Induction of insect plant resistance to the spittlebug Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) in sugarcane by silicon application. Neotrop. Entomol. 40: 387–392. Google Scholar
  26. M. G. A. Landell , A. C. M. Vasconcelos , M. A. Silva , D. Perecin , R. S. R. Carvalho , V. Barbosa , and M. J. penna 1999. Validaçâo de métodos de amostragem para estimativa de produção de canade-açúcar, em áreas de colheita mecanizada. Stab. Açúcar. álcool. Sub. 18: 48–51. Google Scholar
  27. Z. Li , S. B. Alves , D. W. Roberts , M. Z. Fan , I. Delalibera , J. Tang , R. B. Lopes , M. Faria , and D. E. N. Rangel 2010. Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Bio. Sci. Technol. 20: 117–136. Google Scholar
  28. E. S. Loureiro , A. Batista Filho , J. E. M. Almeida , and L. G. A. Pessoa 2005. Seleção de isolados de Metarhizium anisopliae (Metch.) Sorok. contra a cigarrinha da raiz da cana-de-açúcar Mahanarvafimbriolata (Stål) (Hemiptera: Cercopidae) em laboratorio. Neotrop. Entomol. 34: 791–798. Google Scholar
  29. L. L. Madaleno , G. C. Ravaneli , L. E. Presotti , M. A. Mutton , O. A. Fernandes , and M. Mutton Jr . 2008. Influence of Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) injury on the quality of cane juice. Neotrop. Entomol. 37: 68–73. Google Scholar
  30. A. F. MendonçA 2005. Cigarrinhas da cana-de-açúcar: Controle biológico. Maceió: Insecta, Brasil. 317 pp. Google Scholar
  31. S. Quinelato , P. S. Golo , W. M. S. Perinotto , F. A. Sá , M. G. Camargo , I. C. Angelo , A. M. L. Moraes , and V. R. E. P. Bittencourt 2012. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Vet. Parasitol. 190: 556–565. Google Scholar
  32. E. D. Quintela , G. M. Mascarina , R. A. Silva , J. A. F. Barrigossi , and J. F. S. Martins 2013. Enhanced susceptibility of Tibraca limbati ventri s (Heteroptera: Pentatomidae) to Metarhizium anisopliae with sublethal doses of chemical insecticides. Biol. Control. 66: 56–64. Google Scholar
  33. G. C. Ravaneli , D. B. Garcia , L. L. Madaleno , M. A. Mutton , J. P. Stupiello , and M. J. R. Mutton 2011. Spittlebug impacts on sugarcane quality and ethanol production. Pesqui. Agropecu. Brasileira 46: 120–129. Google Scholar
  34. J. A. S. Rossato , G. H. G. Costa , L. L. Madaleno , M. J. R. Mutton , L. G. Higley , and O. A. Fernandes 2013. Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agron. J. 105: 643–648. Google Scholar
  35. C. W. Russell , T. A. Ugine , and A. E. Hajek 2010. Interactions between imidacloprid and Metarhiziumbrunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae)). J. Invert. Pathol. 105: 305–311. Google Scholar
  36. R. A. Simões , R. G. Letícia , J. M. S. Bento , L. F. Solter , and I. Delalibera Jr 2012. Biological and behavioral parameters of the parasitoid Cotesiaflavipes(Hymenoptera: Braconidae) are altered by the pathogen Nosema sp. (Microsporidia: Nosematidae). Biol. Control. 63: 164–171. Google Scholar
  37. R. A. Silva , E. D. Quintela , G. M. Mascarina , J. A. F. Barrigossi , and L. M. LlãO 2013. Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Sci. Agrie. 70:152–160. Google Scholar
  38. P. V. Tiago , H. M. I. Souza , J. B. Moysés , N. T. Oliveira , and E. A. L. A. Lima 2011. Differential pathogenicity of Metarhizium anisopliae and the control of the sugarcane root spittlebug Mahanarva fimbriolata. Brazilian Arch. Biol. Technol. 54: 435–440. Google Scholar
  39. P. V. Tiago , M. P. Carneiro-Leão , E. Malosso , N. T. Oliveira , and E. Á. L. A. Lima 2012. Persistence and effect of Metarhizium anisopliae in the fungal community of sugarcane soil. Biol. Control. 57: 653–661. Google Scholar
  40. UDOP (União Dos Produtores De Bioenergia). 2013.  http://www.udop.com.br/index.php?item=boletins. Accessed 31 Jul 2013. Google Scholar
  41. União Da Indústria Da Cana-De-Açucar (UNICA). 2013.  http://www.unicadata.com.br. Accessed 31 Jul 2013. Google Scholar
  42. A. M. Vacari , S. A. De. Bortoli , D. F. Borba , and M. I. E. G. martins 2012. Quality of Cotesia flavipes (Hymenoptera: Braconidae) reared at different host densities and the estimated cost of its commercial production. Biol. Control. 63: 102–106. Google Scholar
  43. H. X. L. Volpe , R. T. Duarte , A. G. Silva , E. B. Júnior , G. J. Leite , and M. C. Ferreira 2012. Distribuição volumétrica de calda contendo Metarhiziumanisopliae. Cienc. Rural 42: 1909–1915. Google Scholar
  44. X. Zhao , C. Wu , Y. Wang , T. Cang , L. Chen , P. Yu , and Q. Wang 2012. Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogrammajaponicum an egg parasitoid of rice lepidopterans. J. Econ. Entomol. 105: 92–101. Google Scholar
Samir Oliveira Kassab, Elisângela De Souza Loureiro, Camila Rossoni, Fabricio Fagundes Pereira, Rogério Hidalgo Barbosa, Daniele Perassa Costa and José Cola Zanuncio "Combinations of Metarhizium anisopliae with Chemical Insecticides and their Effectiveness in Mahanarva fimbriolata (Hemiptera: Cercopidae) Control on Sugarcane," Florida Entomologist 97(1), (1 March 2014). https://doi.org/10.1653/024.097.0120
JOURNAL ARTICLE
9 PAGES


SHARE
ARTICLE IMPACT
Back to Top